[題目] 一維的薛丁格方程式
[領域] (題目相關領域)
quantum mechenics
[來源] (課本習題、考古題、參考書...)
考古題
[題目]
Consider the one dimensional wave funciton give below.
a) Draw a graph of the wave function for the region defined.
b) Determine the value of the normalization constant
c) what is the probability of finding the particle between x = 0 and x = a/2
d) show that the wave fucntion is a solution of the non-relativistic wave equation (Schrodinger equation) for the potential energy function give below.
ψ(x) = A(a^2-x^2) for -a < x < +a
ψ(x) = 0 for x< -a and x > a
U(x) = -((h bar)^2/ma^2)(x^2/(a^2-x^2))
[瓶頸] (寫寫自己的想法,方便大家為你解答)
a) http://i.imgur.com/JK7Qe.png

b) A = (√15 )/(4√a^5)
c) 39%
d) 不知道從哪裡開始
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 24.5.242.122
→
10/15 02:21, , 1F
10/15 02:21, 1F
→
10/15 04:49, , 2F
10/15 04:49, 2F
→
10/15 04:49, , 3F
10/15 04:49, 3F
作法懂了 不過不是很了解原理
是不是因為ψ satisfy Schrodinger Equation?
就像解微分方程完之後 帶回去確認是不是對的?
※ 編輯: andrenvq57 來自: 24.5.242.122 (10/15 07:25)
→
10/15 09:28, , 4F
10/15 09:28, 4F
謝謝c大
※ 編輯: andrenvq57 來自: 24.5.242.122 (10/15 10:47)
