Re: [問題] 圓盤導體中心上方電壓求法?
※ 引述《johnoldman (嗶嗶嗶)》之銘言:
: 請問若一半徑為a
: 厚度極小之導體圓盤與xy平面平行
: 表面電荷非均勻分佈,
: 如何求中心上方z處之電壓??
: 電荷分佈與曲率成正比
: 公式如下~
: Q
: σ(x,y,z) = --------------------------------------------------------
: 4πabc { (x^2 /a^4 ) + (y^2 /b^4) + (z^2 /c^4)
: 感謝耐心看完題目
(導體只有面電荷密度吧)
要變成圓盤,也就是c→0,而 1-(x^2/a^2)-(y^2/b^2) = (z^2/c^2) [橢球]
Q
=> σ(x,y) = ───────────────────────────────
4πab[c^2(x^2/a^4)+c^2(y^2/b^4)+1-(x^2/a^2)-(y^2/b^2)]^(1/2)
c→0 Q
======> σ(x,y) = ────────────────── (兩面,所以乘以2了)
2πab[1-(x^2/a^2)-(y^2/b^2)]^(1/2)
現在,導體為圓盤,也就是 a = b,且定義 r ≡ (x^2+y^2)^(1/2)
Q
=> σ(r) = ────────── (note:導體在尖點(r=R)處電荷密度無限大)
2πa(a^2-r^2)^(1/2)
1 a σ(x,y)2πrdr
=> V = ───∫ ─────────
4πε 0 (z^2+r^2)^(1/2)
Q a rdr
= ────∫ ─────────────────
4πεa 0 (a^2-r^2)^(1/2) (z^2+r^2)^(1/2)
= ......... (積分給mathematica算了)
-1
Q tan (a/z)
= ───────
4πεa
#
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.211.87
推
12/10 22:19, , 1F
12/10 22:19, 1F
※ 編輯: deepwoody 來自: 140.112.211.87 (12/10 22:35)
→
12/10 22:36, , 2F
12/10 22:36, 2F
→
12/10 22:36, , 3F
12/10 22:36, 3F
→
12/10 22:38, , 4F
12/10 22:38, 4F
→
12/10 22:38, , 5F
12/10 22:38, 5F
※ 編輯: deepwoody 來自: 140.112.211.87 (12/10 22:39)
→
12/10 22:39, , 6F
12/10 22:39, 6F
→
12/10 22:39, , 7F
12/10 22:39, 7F
→
12/10 22:40, , 8F
12/10 22:40, 8F
→
12/10 22:41, , 9F
12/10 22:41, 9F
→
12/10 22:41, , 10F
12/10 22:41, 10F
→
12/10 22:42, , 11F
12/10 22:42, 11F
→
12/10 22:43, , 12F
12/10 22:43, 12F
※ 編輯: deepwoody 來自: 140.112.211.87 (12/10 22:44)
推
12/11 01:59, , 13F
12/11 01:59, 13F
→
12/11 01:59, , 14F
12/11 01:59, 14F
→
12/11 02:00, , 15F
12/11 02:00, 15F
不用,上面的面電荷密度乘以2的原因是原本橢球上下兩個表面是分開的
現在取c趨近於0,也就是上下兩表面的電荷已經合在一起了,所以乘以2
而求電容時,Q = CV,這個V是指電位差,即V在z=0處到z=∞處的差值
=> △V = |V(z=0)-V(z=∞)| = (π/2)-0 = π/2
=> C = Q/(π/2) = 2Q/π
※ 編輯: deepwoody 來自: 140.112.211.87 (12/11 11:45)
推
12/11 12:17, , 16F
12/11 12:17, 16F
→
08/13 15:58, , 17F
08/13 15:58, 17F
→
09/17 13:58, , 18F
09/17 13:58, 18F
→
11/09 12:07, , 19F
11/09 12:07, 19F
→
01/02 14:37,
7年前
, 20F
01/02 14:37, 20F
→
07/06 22:43,
6年前
, 21F
07/06 22:43, 21F