普物期中考考古題(林敏聰) 14.Nov.2002
我知道現在才拿到有點晚 = ="
不過之前板上 90 年的那一份題目並沒有考到 Oscillation,
所以應該還是有點參考價值的。
1. Please write down the three Newton's laws of motion in both translational
and angular forms, including their "equivalent" expressions of Newton's
second law. What are the assumptions for their application in classic
mechanics? Are those "equivalent" forms really equivalent? Why? (20%)
2. Two particles, each of amss m and speed v, travel in opposite directions
along parallel lines separated by a distance d.
(a) In term of m, v and d find an expression for the magnitude L of
angular momentum of the two-particle system around a point midway
between the two lines.
(b) Does the expression change if we change the point about which L is
calculated?
(c) Now reverse the direction of travel for one of the particles and
repeat (a) and (b). (20%)
3. Please prove the parallel-axis theorem and calculate the rotational
inertial of body (a), (b), (c), and (d) (see Fig.1). (20%)
Fig.1
(a) Solid cylinder about central axis
圓柱,半徑 R,長 L,轉軸過柱面圓心,平行於 L
(b) Solid cylinder about central diameter
圓柱,半徑 R,長 L,轉軸過柱面直徑,緊貼著圓柱的其中一個底面
(c) Solid sphere about any diameter
圓球,半徑 R,轉軸過球心
(d) Slab about perpendicular axis through center
矩形板子,長 a,寬 b,轉軸垂直於板面,過其中一個頂點
4. Please prove the TWO equivalent expressions of Newton's second law in
angular forms from those in translational form. (10%)
5. Two blocks of masses m and 4m are connected by a spring and rest on a
frictionless surface. They are given velocities toward each other such
that the block with mass m travels initially at v1 toward the center of
mass, which remains at rest. What is the initial velocity of the other
block? (10%)
6. (10%) Consider a damped simple harmonic motion with the total force
ΣF = - kx - bv, where k is force constant of the spring, x the
displacement, v the velocity, b the damping constant. Please write down
and solve the (differential) equation of motion from the Newton's second
law.
7. (a) (5%) Two identical springs are attached to a block of mass m and to
fixed supports as shown in Fig.2. Show that the frequency of
oscillation on the frictionless surface is
-1/2 <--上標
f = 1/2π(2k/m)
(b) (5%) Suppose that the two springs in Fig.2 have different spring
constants k1 and k2. Please state the frequency f of oscillation of the
block in f1 and f2, where f1 and f2 are the frequencies at which the
block would oscillate if connected only to spring 1 or only spring 2.
Fig.2 | | ~~~~~ <--這是彈簧...|||
| k1 m k2 |
|~~~~~~~~~□~~~~~~~~~| <--這邊有個底面,有些 telnet 軟體顯示不出來
8. Good luck!!!!
--
感謝化學系 Raines 同學和她的學姊!
--
請推 Steggie 好心會有好報  ̄︶ ̄ 謝謝大家!!
--
...from *Vertopia*, somewhere over the rainbow...
★
╭──╮╭─*╮╭──╮╭──╮ ╭──╮╭──╮╭──╮
│ ╯ │ │ │ │ │ │ │
╰──╮ │ ├── │ ─┬* ├──╮╰──╮╰──┤
╰──╯ ┴ ╰──╯╰──╯ ╰──╯╰──╯╰──╯
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 211.75.136.1
推
140.112.239.233 11/10, , 1F
140.112.239.233 11/10, 1F
→
140.112.239.233 11/10, , 2F
140.112.239.233 11/10, 2F
→
140.112.239.233 11/10, , 3F
140.112.239.233 11/10, 3F
→
140.112.239.233 11/10, , 4F
140.112.239.233 11/10, 4F
→
140.112.239.233 11/10, , 5F
140.112.239.233 11/10, 5F
→
140.112.239.233 11/10, , 6F
140.112.239.233 11/10, 6F
→
140.112.239.233 11/10, , 7F
140.112.239.233 11/10, 7F
推
140.112.18.4 11/10, , 8F
140.112.18.4 11/10, 8F
→
140.112.239.233 11/10, , 9F
140.112.239.233 11/10, 9F
→
140.112.239.233 11/10, , 10F
140.112.239.233 11/10, 10F
→
140.112.239.233 11/10, , 11F
140.112.239.233 11/10, 11F
→
140.112.239.233 11/10, , 12F
140.112.239.233 11/10, 12F
→
140.112.239.233 11/10, , 13F
140.112.239.233 11/10, 13F
→
140.112.239.233 11/10, , 14F
140.112.239.233 11/10, 14F
→
140.112.239.233 11/10, , 15F
140.112.239.233 11/10, 15F
→
140.112.239.233 11/10, , 16F
140.112.239.233 11/10, 16F
→
140.112.239.233 11/10, , 17F
140.112.239.233 11/10, 17F
→
140.112.239.233 11/10, , 18F
140.112.239.233 11/10, 18F
→
140.112.239.233 11/10, , 19F
140.112.239.233 11/10, 19F
→
140.112.239.233 11/10, , 20F
140.112.239.233 11/10, 20F
→
140.112.239.233 11/10, , 21F
140.112.239.233 11/10, 21F
→
140.112.239.233 11/10, , 22F
140.112.239.233 11/10, 22F
推
210.68.109.68 11/10, , 23F
210.68.109.68 11/10, 23F
推
140.112.240.164 11/10, , 24F
140.112.240.164 11/10, 24F
推
140.112.250.236 11/10, , 25F
140.112.250.236 11/10, 25F
推
140.112.240.128 11/10, , 26F
140.112.240.128 11/10, 26F
推
61.229.121.213 11/10, , 27F
61.229.121.213 11/10, 27F
推
140.112.240.133 11/10, , 28F
140.112.240.133 11/10, 28F
推
218.166.116.20 11/10, , 29F
218.166.116.20 11/10, 29F
推
140.112.239.186 11/10, , 30F
140.112.239.186 11/10, 30F
推
140.112.239.186 11/10, , 31F
140.112.239.186 11/10, 31F
推
140.112.239.186 11/10, , 32F
140.112.239.186 11/10, 32F
推
140.112.239.186 11/10, , 33F
140.112.239.186 11/10, 33F
推
140.112.239.186 11/10, , 34F
140.112.239.186 11/10, 34F
推
140.112.239.186 11/10, , 35F
140.112.239.186 11/10, 35F
推
140.112.239.186 11/10, , 36F
140.112.239.186 11/10, 36F
推
140.112.239.186 11/10, , 37F
140.112.239.186 11/10, 37F
推
140.112.239.186 11/10, , 38F
140.112.239.186 11/10, 38F
推
140.112.239.186 11/10, , 39F
140.112.239.186 11/10, 39F
推
140.112.239.186 11/10, , 40F
140.112.239.186 11/10, 40F
推
140.112.239.186 11/10, , 41F
140.112.239.186 11/10, 41F
推
140.112.239.186 11/10, , 42F
140.112.239.186 11/10, 42F
推
140.112.239.186 11/10, , 43F
140.112.239.186 11/10, 43F
推
140.112.239.186 11/10, , 44F
140.112.239.186 11/10, 44F
推
140.112.239.186 11/10, , 45F
140.112.239.186 11/10, 45F
推
140.112.239.186 11/10, , 46F
140.112.239.186 11/10, 46F
推
140.112.239.186 11/10, , 47F
140.112.239.186 11/10, 47F
推
140.112.239.186 11/10, , 48F
140.112.239.186 11/10, 48F
推
140.112.239.186 11/10, , 49F
140.112.239.186 11/10, 49F
推
140.112.239.186 11/10, , 50F
140.112.239.186 11/10, 50F
推
218.34.8.119 11/10, , 51F
218.34.8.119 11/10, 51F
推
218.34.12.30 11/10, , 52F
218.34.12.30 11/10, 52F