Fw: [試題] 98暑 周青松 微積分甲下 期末考

看板NTUBIME104HW作者 (假勇)時間13年前 (2012/06/15 00:14), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串1/1
※ [本文轉錄自 NTU-Exam 看板 #1CXm9aOt ] 作者: bookh (book) 看板: NTU-Exam 標題: [試題] 98暑 周青松 微積分甲下 期末考 時間: Wed Sep 8 11:26:25 2010 課程名稱︰微積分甲下(暑修) 課程性質︰ 課程教師︰周青松 開課學院: 開課系所︰ 考試日期(年月日)︰2010/09/08 考試時限(分鐘): 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(a) For each integer n and all γ≠0, show that ▽r^n = nr^(n-2)γ. Here r=│γ│ and γ=xi+yj+zk. Note that if n is positive and even, the result holds at γ=0. (b) Assume that ▽f(x) exist. n n-1 Prove that, for each integer n, we have ▽f(x)=nf(x) ▽f(x) 2.(a) Find the directional derivative of f(x,y)=ln(x^2+y^2) at P(0,1) in the direction of 8i+j (b) Find the directional derivative of f(x,y,z) at (1,2,-2) in the direction of increasing t along the path r(t)=ti+2cos(t-1)j-2e^(t-1)k 3.(a) Use the chain rule to find the rate of f(x,y,z)=x^2 y+zcosx with respect to t along the twisted cubic r(t)=ti+t^2j+t^3k (b) Find the rate of chang of f(x,y,z)=ln(x^2+y^2+z^2) with respect to t along the twisted cubic r(t)=sin(t)i+cos(t)j+e^2tk 4.(a) Calculate by double integration the area of the bounded region determind by the curves x^2=4y, 2y-x-4=0 (b) Calculate the volume within cylinder x^2+y^2=b^2 between the plane y+z=a and z=0 given that a≧b>0 5.(a) Use triple integration to find the volume of the tetrahedron T bounded by x+y+z=1 in the first octant. (Hint:0≦z≦1-x-y, 0≦y≦1-x, 0≦x≦1) (b) Calculate the mass of the solid 0≦x≦a, 0≦y≦b, 0≦z≦c, with the density function ρ(x,y,z)=xyz. 參考答案 1.略 2.(a)2/(65^0.5) (b)-7/(5^0.5) 3.(a)4t^3-t^3sint+3t^2cost (b)4e^(4t) / 1+e^(4t) 4.(a)9 (b)πab^2 5.(a)1/6 (b)a^2 b^2 c^2 /8 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.207 ※ 編輯: bookh 來自: 140.112.250.207 (09/08 11:55) ※ 編輯: bookh 來自: 140.112.250.207 (09/09 00:17) ※ 編輯: bookh 來自: 218.167.242.228 (09/19 16:06) ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 轉錄者: fanif (114.42.70.242), 時間: 06/15/2012 00:14:00

06/15 00:57, , 1F
帥電風扇
06/15 00:57, 1F

06/17 14:08, , 2F
2b是16-2的19題,這篇有少條件
06/17 14:08, 2F
文章代碼(AID): #1FsWt9Wh (NTUBIME104HW)