Fw: [試題] 99暑 周青松 微積分甲下 期中考

看板NTUBIME104HW作者 (假勇)時間13年前 (2012/04/13 16:37), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
※ [本文轉錄自 NTU-Exam 看板 #1ELBDiSe ] 作者: SWW (鼠嗚嗚) 看板: NTU-Exam 標題: [試題] [試題] 99暑 周青松 微積分甲下 期中考 時間: Wed Aug 24 16:16:41 2011 課程名稱︰微積分甲下(暑修) 課程性質︰ 課程教師︰周青松 開課學院: 開課系所︰ 考試日期(年月日)︰100/8/24 考試時限(分鐘):115分鐘 是否需發放獎勵金:是~謝謝 (如未明確表示,則不予發放) 試題 : It's necessary to explain all the reason in detail and show all of your work on the answer sheet. Or you will NOT get any credits. If you used any theorems in textbook or proved in class, state it catefully and ecplicitly. Ⅰ. A. (10%) Find lim (1+x)^1/x. x→0+ B. (10%) Determine whether the sequence An= x^100n/n! is convergent or not as n→∞. If yes, find the limit of the sequence. ∞ Ⅱ. A. (10%) Prove that ∫ dx/x^p convergent if p > 1 and diverges if 0<p≦1. 1 B. (10%) Find the mean, denoted by μ, of the exponential density function , that is , ∞ μ=∫ xf(x)dx -∞ where f(x)=ke^-kx ,if x≧0 f(x)=0 ,if x<0 k>0. ∞ ∞ Ⅲ. A. (10%) Show that Σ x^k =1/1-x, if |x|<1. And Σ x^k diverges if |x|≧1. k=0 k=0 ∞ B. (10%) Show that Σ 1/k^p converges if, and only if, p > 1. k=1 Ⅳ. A. (10%) Find the Taylor polynomial Pn(x) of f(x)=e^x to the order n. And show that the n-th remainder trem of the Taylor expansion,denoted by Rn(x), is convergent to 0 as n→∞. ∞ B. (10%) Show that sinh x =Σ x^2k+1/(2k+1)! for all real x. k=0 Ⅴ. A. (10%) Show that arctan x = x - x^3/3 + x^5/5 - x^7/7 + ...,for -1≦x≦1 1 B. (10%) Estimate the integral ∫ e^(-x^2) dx with error within 0.0001. 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.214

08/24 18:08, , 1F
推S XD
08/24 18:08, 1F

08/25 17:30, , 2F
淚推QQ
08/25 17:30, 2F

08/31 12:27, , 3F
QQ
08/31 12:27, 3F
※ 發信站: 批踢踢實業坊(ptt.cc) ※ 轉錄者: fanif (140.112.7.214), 時間: 04/13/2012 16:37:17
文章代碼(AID): #1FX-M_gH (NTUBIME104HW)