[微積分]周青松 98下期中考考古題

看板NTUBIME103HW作者 (King Power)時間14年前 (2011/04/13 23:42), 編輯推噓4(401)
留言5則, 5人參與, 最新討論串1/1
1/x 1.(a)Find lim(1+x) x→0+ -kx (b)Let k>0. Show that the function f(x)=ke x>=0 is a probability density =0 x<0 function. 2. Show that k 2 3 x ∞ x x x (a)e =Σ-----= 1 + x + --- + ---+..... for all real x k=0 k! 2! 3! ∞ 1 2k (b)coshx= Σ------- x for all real x k=0 (2k)! 3.(a)Expand sinx and cosx in powers of x-a (b)Show that both of above series are absolutely convergent for all real x 4.Find the interval of convergence of the following power series. k (a)Σ-----x^k 10^k k^3 (b)Σ -----(x-4)^k e^k sinx-x 5. (a) Evaluate the limit lim----------- by (i)L'Hopital rule, (ii)by using x→0 x^3 power series (b)Find a power series representation for the improper intergral: x sinht ∫--------dt 0 t -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.120.76

04/14 00:18, , 1F
水喔
04/14 00:18, 1F

04/14 00:50, , 2F
沝喔
04/14 00:50, 2F

04/14 01:05, , 3F
淼喔
04/14 01:05, 3F

04/16 13:19, , 4F
水喔
04/16 13:19, 4F

04/16 16:32, , 5F
水^4喔
04/16 16:32, 5F
文章代碼(AID): #1DfSHSVh (NTUBIME103HW)