[轉錄][試題] 95暑修 周青松 微甲下期中(正確版)

看板NTUBIME100HW作者 (唉呦正一)時間17年前 (2008/04/08 21:29), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
※ [本文轉錄自 NTU-Exam 看板] 作者: wkh (wkhuanh) 看板: NTU-Exam 標題: [試題] 95暑修 周青松 微甲下期末 時間: Wed Sep 6 14:30:28 2006 課程名稱︰微積分甲下 課程性質︰署修 課程教師︰周青松 開課系所︰數學系 考試時間︰2006/9/6 是否需發放獎勵金:m (如未明確表示,則不予發放) 試題 : I.  (A) Prove that, ∞ k 1   (i) if |x| < 1, then Σ x = ───     n=0 1-x ∞ k (ii) if |x| ≧ 1, then Σ x diverges.     n=0 ∞ k-1 1  (B) Show that Σ kx = ──── , for |x| < 1 k=0 (1-x)^2 II. ∞ n -αk  (A) Prove that, Σ k e k=0 converges for each nonnegative integer n and α > 0.  (B) Use the integral test to show that ∞ 1 Σ ─── converges for p > 1 k=1 k^p III.  (A) Prove that ∞ (-1)^k 2k cos(x) = Σ ──── x for all real x. k=0 (2k)!  (B) Show that ∞ 1 2k cosh(x) = Σ ─── x for all real x. k=0 (2k)! IV.  Find a power series representation for the improper integral x ln(1+t)  (A) ∫ ──── dt 0 t x sinh(t)  (B) ∫ ──── dt 0 t V.  (A) For each integer n and all γ≠0, where γ=xi+yj+zk and r =║γ║. Prove that n n-2 ▽r =(nr )γ  (B) Find the directional derivative of the function 2 f(x,y,z) = 2xz cos(πy) at the point P(1,2,-1) toward the point Q(2,1,3) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.39.53

08/21 00:58,
這應該是期中
08/21 00:58
-- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.30.147
文章代碼(AID): #17-tDFOu (NTUBIME100HW)