[試題] 109上 蔡宜洵 複分析導論 第五次小考

看板NTU-Exam作者 (艾利歐)時間5年前 (2021/01/15 15:27), 5年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰複分析導論 課程性質︰數學系大三必修 課程教師︰蔡宜洵 開課學院:理學院 開課系所︰數學系 考試日期︰2021年01月07日(四) 考試時限:13:10-13:50,共計40分鐘 試題 :               Complex Analysis 1. Let ψ be Tschebychev's ψ-function defined by log(x) ψ(x) = Σ log(p) = Σ [ -------- ] log(p), p^m≦x p≦x log(p) where [u] denotes the largest integer less than or equal to u. If ψ(x)~x as x→∞, the prove that π(x) ~ x/log(x) as x→∞. [Hint: You may need to prpve two inequalities log(x) log(x)      1 ≦ lim inf π(x) -------,   lim sup π(x) ------- ≦ 1. x→∞ x x→∞ x For the second inequality, you may need to prove that ψ(x) ≧ (π(x) - π(x^α)) log (x^α) for any 0 < α < 1.] 2. Let f(z) be a non-constant elliptic function with period ω1,ω2, where ω1/ω2 is not in R; and given z0 ∈ C, consider P = {z0 + α1ω1 + α2ω2 | 0 ≦ α1, α2 ≦ 1} be the fundamental parallelogram with no pole in ∂P. Prove tha a.) f(z) has at least two poles in P. b.) f(z) has same number of zeros and poles in P. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 39.12.190.67 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1610695671.A.0DA.html ※ 編輯: t0444564 (39.12.190.67 臺灣), 01/15/2021 15:28:40
文章代碼(AID): #1W0KFt3Q (NTU-Exam)