[試題] 108-2 余正道 線性代數二 第三次小考

看板NTU-Exam作者 (艾利歐)時間5年前 (2020/06/03 14:48), 編輯推噓0(002)
留言2則, 1人參與, 5年前最新討論串1/1
課程名稱︰線性代數二 課程性質︰數學系大一必修 課程教師︰余正道 開課學院:理學院 開課系所︰數學系 考試日期︰2020年05月22日(五) 考試時限:11:20-11:50,共30分鐘 試題 : [Quiz 3]        Name:        ID: 1. (8%) Solve the differential equation y'''+5y''+3y'-9y=0. 2. Let V be a vector space over a field (not necessarily finite-dimensional), and let T:V→V be a linear transformation. Let W⊆V be a T-invariant subspace. We have knwon that T induces the linear transformations   T| : W→W and T':V/W → V/W.    W   (a) (6%) Show that if T| and T' are isomorphisms, then T is an isomorphism.               W   (b) (8%) Conversely, suppose W is finite-dimensional, show that if T is an     isomorphism, then T| and T' are isomorphisms.               W 3. (8%) Let A∈M (R) be a symmetric matrix with the eigenvalues λ1≧…≧λn.         n              T Let N∈M (R) with N N = I and μ1≧…≧μm be the eigenvalues of the       n×m m       T matrix N AN. Show that μi≧λi≧μ for all i=1,...,n. m-n+i -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 27.247.126.182 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1591166937.A.C6D.html

06/05 02:13, 5年前 , 1F
最後一題的不等號應更正為
06/05 02:13, 1F

06/05 02:13, 5年前 , 2F
λi≧μi≧λ_(n-m+i) for all i=1,...,m.
06/05 02:13, 2F
文章代碼(AID): #1UrqVPnj (NTU-Exam)