[試題] 108-1 李秋坤 代數導論一 第二次小考

看板NTU-Exam作者 (Momo超人)時間6年前 (2020/01/10 21:26), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰代數導論一 課程性質︰數學系大二必修 課程教師︰李秋坤教授 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2019/12/20 考試時限(分鐘):50 試題 : (滿分100分) (以下的屬於符號都用ε代替) 1. (a) (10%) Determine Z(D8), the center of the Dihedral group D8. (b) (10%) Find all subgroups of D8. 2. (20%) Show that, for each hεH, dimR R[h]≦2. (Here H is the Quaternions, the 4-dimensional real algebra.) 3. (a) (10%) Let G be a cyclic group of order n and let dεN. Show that if d divides n then G contains a subgroup of order d. (b) (10%) Show that A4 has no subgroup of order 6. (Hint: Suppose that H is a subgroup in A4 of order 6. Show that there exists a 3-cycle σ not belongs to H. And then consider H, σH, and (σ^2)H.) 4. (10%) Suppose that m and n be relatively prime positive integers. Determine whether there exists a non-trivial group homomorphism from the additive group Zm to the additive group Zn or not, and verify your answer. 5. Let R and S be rings with identity elements 1R and 1S, respectively. Suppose that φ: R→S is a nonzero additive map such that φ(xy)=φ(x)φ(y) for all x,yεR. (a) (10%) Show that if φ is surjective then φ(1R)=1S. (b) (10%) Show that if there is an element uεR such that φ(u) is invertible in S then φ(1R)=1S. (c) (10%) Show that if S has no zero-divisors then φ(1R)=1S. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.77.51 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1578662769.A.4AB.html
文章代碼(AID): #1U67jnIh (NTU-Exam)