[試題] 108-1 余正道 線性代數一 第三次小考

看板NTU-Exam作者 (艾利歐)時間6年前 (2019/12/04 13:46), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰線性代數一 課程性質︰數學系大一必修 課程教師︰余正道 開課學院:理學院 開課系所︰數學系 考試日期︰2019年11月29日(五),11:20-11:50 考試時限:30分鐘 試題 : [Quiz 3] 1. We say that a matrix A∈M_n(C) is skew-symmetric if A^t = -A. (a) (5%) Show that there is no invertible skew-symmetric matrix A∈M_n(C) if n is odd. (b) (5%) If A∈M_(2n)(C) is an invertible skew-symmetric matrix, show that A^(-1) is also skew-symmetric. 2. Let V = M_2(R) be a 4-dimensional vector space over R and let a,b∈R. Consider a linear operator on V defined by T(B) = BA - AB where A = (a b) (b a) (a) (4%) Find all characteristic values of T. (b) (4%) Find the characteristic spaces of each characteristic values. (c) (2%) Find all a,b∈R such that T is diagonalizable. 3. (10%) Let n be a positive integer and A∈M_n(C) be a matrix such that characteristic polynomial of A with real coefficients. Suppose that A^4 - 2A^3 + A^2 + 2A - 2I = 0. Show that det(A) > 0 if and only if n - tr(A) is divisible by 4. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.3 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1575438389.A.8C8.html
文章代碼(AID): #1TvqWrZ8 (NTU-Exam)