[試題] 108-1 馮世邁 線性代數

看板NTU-Exam作者 (尷尬人)時間6年前 (2019/11/10 17:12), 6年前編輯推噓2(200)
留言2則, 2人參與, 6年前最新討論串1/1
課程名稱︰線性代數 課程性質︰工管系科管組必修 課程教師︰馮世邁 開課學院:管理學院 開課系所︰工管系 考試日期(年月日)︰108/11/06 考試時限(分鐘):100分鐘 試題 : (以下*代表向量,等於課本上的粗體、老師筆記中的底線。 (ε代表屬於) 1. Let A and its reduced row echelon form be respectively given by: ┌ 1 0 -3 -1 4┐ ┌ 1 0 -3 0 3 ┐ A = │ 2 -1 -8 -1 9│ R = │ 0 1 2 0 -2 │ │-1 1 5 0 -5│ │ 0 0 0 1 -1 │ └ 0 2 2 1 -3┘ └ 0 0 0 0 0 ┘ (a) Find a basis for: (i)Col A (ii)Null A (iii)Row A (b) Verify whether the following set is a basis of Null A or not. { ┌ 3 ┐ ┌ -3 ┐ } { │-2 │ │ 2 │ } S = { │ 2 │ │ 1 │ } { │ 1 │ │ 2 │ } { └ 1 ┘ , └ 2 ┘ } 2. Find the determinant of the following matrix: ┌ 1 -2 4 4 ┐ │ 0 0 4 -2 │ │ 0 1 3 -3 │ └ 4 -4 4 15 ┘ 3. Let A = [a1* a2* a3* a4*] be a 4*4 matrix with reduced row echelon form R. Suppose that det A = -3. Find the determinants of the following matrices: (a) R (b) A' = [a4* a3* a2* a1*] (c) -A (d) [2A 3A] [4A 4A] 4. Let T:R^4->R^3 be the linear transfromation defined by ( ┌ x1 ┐ ) ┌ x1 - x2 ┐ ( │ x2 │ ) │ 2x2 + 2x3+ 2x4 │ T = ( │ x3 │ ) = │ 2x1 - 4x2 - 2x3 - x4 │ ( └ x4 ┘ ) └ 2x1 - 4x2 - 2x3 - x4 ┘ (a) Find the standar matrix of T. (b) Is T one-to one? (c) Is T onto? 5. Let V be a subspace of R^n and dim V = k. Let u be an n*1 vector and u !ε V. Define W = {wεR^n : w* = v* + cu* for some v*εV amd some scalar cεR }. (a) Prove that W is a subspace of R^n. (b) What is the dimension of W? (Explain your answer.) 6. Determine by inspection whether the following sets are linearly dependent or linearly independent. (Explain your answer.) A correct answer without a correct explanation get 2%. { ┌ 1 ┐ ┌ 1 ┐ ┌ 1 ┐ } { │ 1 │ │ 0 │ │ 0 │ } (a) S1 = {u1*, u2*, u3*} = { │ 2 │ │ 2 │ │ 2 │ } { │ 0 │ │ 1 │ │ 0 │ } { │ 1 │ │ 1 │ │ 1 │ } { └ 1 ┘, └ 0 ┘ , └ 1 ┘ } { ┌ 9 ┐ ┌ 4 ┐ ┌ 8 ┐ ┌ 5 ┐ ┌ 1 ┐ } { │ 7 │ │ 5 │ │ 3 │ │ 9 │ │ 2 │ } (b) S2 = {v1*, v2*, v3*} = { │ 6 │ │ 6 │ │ 2 │ │ 6 │ │ 3 │ } { │ 0 │ │ 0 │ │ 0 │ │ 0 │ │ 5 │ } { └ 0 ┘, └ 0 ┘ , └ 0 ┘, └ 0 ┘, └ 4 ┘ } { ┌ 9 ┐ ┌ 5 ┐ ┌ 7 ┐ ┌ 1 ┐ } { │ 8 │ │ 7 │ │ 6 │ │ 2 │ } (c) S3 = {w1*, w2*, w3*, w4*} = { │ 0 │ │ 0 │ │ 4 │ │ 3 │ } { └ 0 ┘, └ 0 ┘ , └ 0 ┘, └ 5 ┘ } 7. Let A be an m*n matrix and R be its reduced row echelon form. We know that there exists an m*n matrix P such that PA=R. Suppose that rank A = m and let the pivot columns of A be denoted by al1*, al2*, ... , alm* (i.e. al1* is the first pivot column, al2* is the second pivot column, ... , alm* is the mth pivot column of A). (a) Compute P・ali*, for i = 1, 2, ... , m. (b) Prove that P is unique. -- https://imgur.com/7RzqMvE.gif
-- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.231.202.65 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1573377122.A.C12.html ※ 編輯: GanGaMan (61.231.202.65 臺灣), 11/10/2019 17:12:47 ※ 編輯: GanGaMan (61.231.202.65 臺灣), 11/10/2019 17:14:42

11/10 20:00, 6年前 , 1F
標題少打期中考
11/10 20:00, 1F
※ 編輯: GanGaMan (140.112.4.192 臺灣), 11/11/2019 18:00:11

11/11 18:00, 6年前 , 2F
謝謝你無私的分享
11/11 18:00, 2F
※ 編輯: GanGaMan (140.112.4.192 臺灣), 11/11/2019 18:01:55
文章代碼(AID): #1TnzHYmI (NTU-Exam)