[試題] 106-2 馮世邁 工程數學-線性代數 第三次

看板NTU-Exam作者 (嗨postcard)時間7年前 (2018/06/27 12:24), 7年前編輯推噓0(001)
留言1則, 1人參與, 7年前最新討論串1/1
課程名稱︰工程數學-線性代數 課程性質︰必修 課程教師︰馮世邁 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰2018/06/13 考試時限(分鐘):09:20-10:10(最後延長5分鐘) 試題 : 1. — — | 2 1 1| A = | 1 2 1| | 1 1 2| — — (a)(30%)Find an orthogonal matrz P and a diagonal matrix D such that A = PD(P^-1) (b)(10%)Find the spectral decompositions of A and A^2 respectively. (You may express your answer in terms of vi(vi^T) ) (c)(10%)Find an orthogonal projection matrix for each eigenspace. (You may express your answer in terms of vi(vi^T) ) 2.In the following, determine whether each subset W is a subspace of the vector space V. (A proof is needed for each answer.) (a)(10%)Let v be a nonzero vector in R^n. L(R^n,R^m) and W be the set of all linear transformations T from R^n to R^m such that T(V)=0. (b)(10%)V=M(n x n) and W is the set of all n x n matrices with rank≦k, where k is an integer smaller than n. (c)(10%)V=F(S) and W = {f(t) 屬於 V:f(s1)+f(s2)+...+f(sn)=0}, where s1,s2,...,sn 屬於 S} 3.(20%)Find the equation of the least-squares line for the data: (-1,0),(0,0),(1,1). -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.216.224 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1530073490.A.63E.html ※ 編輯: heypostcard (140.112.216.224), 06/27/2018 12:25:11

07/01 16:16, 7年前 , 1F
已收電機系
07/01 16:16, 1F
文章代碼(AID): #1RCn6IO- (NTU-Exam)