[試題] 105-2 林惠雯 代數二 第一次小考

看板NTU-Exam作者 (^_^)時間8年前 (2017/06/25 15:10), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰代數二 課程性質︰數學系選修,可抵必修代數導論二 課程教師︰林惠雯 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/3/20 考試時限(分鐘):50分鐘 試題 : 1. Do one of the following problems. (a) Let f(x) ∈ K[x]. Prove that a splitting field of f(x) over K exists and is unique up to isomorphism. (b) Let K be a field. Prove that an algebraic closure of K exists and is unique up to isomorphism. (c) Let K ⊂ M ⊂ L be a tower of fields. Prove that L/K is a separable extension if and only if both L/M and M/K are separable extensions. 3 2. Determine the Galois group G of the polynomial x +2 over Q and the correspondence between subgroups of G and intermediate fields between Q and 3 the splitting field L of x +2 over Q. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1498374603.A.45A.html
文章代碼(AID): #1PJs7BHQ (NTU-Exam)