[試題] 105-2 鄭明燕 機率導論 第五次小考

看板NTU-Exam作者 (^_^)時間8年前 (2017/06/24 16:07), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰機率導論 課程性質︰數學系必修 課程教師︰鄭明燕 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/5/25 考試時限(分鐘):30分鐘 試題 : Quiz 5 (2017/5/25) 1. Let X and Y be independent uniform (0,1) random variables. (a)(20%) Find the probability density function of Z = min{X,Y} and compute E[Z]. (b)(15%) Find the joint probability density function of U = X+Y, V = X-Y. (c)(10%) Find the probability density function of X+Y. 2. Suppose that random vector (X,Y) has a joint probability density function (pdf) given by -x ╭ e , if 0≦x<∞, 0≦y≦x, f(x,y) = │ ╰ 0 , otherwise. (a)(15%) Find the conditional pdf of X∣Y=y for any y>0. (b)(15%) Find Cov(X,Y). 3. Let X ,..., X be independent and identically distributed random variables 1 n 2 _ 1 n having mean μ and variance σ . Define X = —— Σ X and n i=1 i 2 1 n _ 2 S = ——— Σ (X -X ) . n-1 i=1 i _ _ (a)(10%) Find E[X] and Var(X). 2 (b)(15%) Find E[S ]. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1498291661.A.7F6.html
文章代碼(AID): #1PJXtDVs (NTU-Exam)