[試題] 105-2 鄭明燕 統計學導論 第一次小考

看板NTU-Exam作者 (息尉)時間8年前 (2017/06/23 12:09), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰統計學導論 課程性質︰數學系選修 課程教師︰鄭明燕 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/3/7 考試時限(分鐘):50 試題 : 1. Suppose that random vector (X,Y) has a joint probability density function (pdf) given by { 24xy , if 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x+y ≦ 1, f(x,y) = { { 0 , otherwise (a) (10%) Are X and Y indepedent random variables? (b) (10%) Find the conditional pdf of X|Y = y for any 0 < y < 1. * 2 (c) (10%) Find g (Y) that minimizes E[(X-g(Y)) ] over functions g on R. (d) (10%) Find Cov(X,Y). 2 2. (20%) If Z ~ N(0,1), find the probability density function of Z . 3. (20%) Find the joint density of X+Y and X/Y, where X and Y are independent exponential random variables with parameter λ. Show that X+Y and X/Y are independent. 4. (20%) Find the approximate mean and variance of Y = √X, where X is a nonnegative random variable with mean 4 and variance 3. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.201 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1498190979.A.028.html
文章代碼(AID): #1PJ9I30e (NTU-Exam)