[試題] 105-2 林太家 偏微分方程導論 期末考

看板NTU-Exam作者 (^_^)時間8年前 (2017/06/20 19:19), 編輯推噓0(003)
留言3則, 2人參與, 最新討論串1/1
課程名稱︰偏微分方程導論 課程性質︰數學系必修 課程教師︰林太家 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/6/20 考試時限(分鐘):110分鐘+延長n分鐘 試題 : Final June 20th Total: 120 points. 1.(10%) Solve the diffusion problem u = ku in 0<x<L, with thw mixed boundary t xx conditions u(0,t) = u (L,t) = 0. x 2.(20%) Suppose u is a smooth solution of ╭ u - u +c(x)u = 0 for x ∈ (0,1), t>0, │ t xx │ │ u(0,t) = u(1,t) = 0 for t>0, │ ╰ u(x,0) = g(x) for x ∈ (0,1), and the function c = c(x) sarisfies c(x)≧γ>0 for x ∈ (0,1), where γ>0 -σt is a constant. Prove if |g(x)|≦1 for x ∈ (0,1), then ∥u∥ ≦ Ce for 2k k ∈ N, t>0, where C, σ are positive constants independent of k and ∥‧∥ 2k 2k 1 2k is defined by ∥u∥ = ∫ u dx. 2k 0 3.(10%) 2 Solve u = c u for 0<x<π, with the boundary conditions u (0,t) = tt xx x 2 u (π,t) = 0 and the initial conditions u(x,0) = 0, u (x,0) = cos (x). x t 4.(20%) Solve u + u = 1 in the annulus a<r<b with u(x,y) vanishing on both xx yy parts of the boundary r = a and r = b. 5.(20%) Find the general solution of 3u + 10u + 3u = sin(x+t). tt xt xx 6.(20%) -1 3 ∞ 3 Let u(x) = ∫ |x-y| f(y) dy for x ∈ R , where f ∈ C ( R ). Prove 3 0 R 3 3 that Δu = cf in R , where Δ is the Laplace operator on R and c is a constant. Calculate the constant c. 7.(20%) 2 4 4 Assume u ∈ C ( R \ {0} ), and u≧0 is a harmonic in R \{0}. Prove that u -2 4 has the form that u(x) = C |x| + C for x ∈ R \{0}, where C , C ≧0 1 2 1 2 are constants. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1497957582.A.3B0.html

06/20 22:30, , 1F
可寫個6 7的詳解嗎 感恩 站內1000P
06/20 22:30, 1F

06/21 14:00, , 2F
6就Evans第二章翻一下。7比較困難,可以翻Axler他們
06/21 14:00, 2F

06/21 14:00, , 3F
合寫的Harmonic function theory第三章最後一段。
06/21 14:00, 3F
文章代碼(AID): #1PIGJEEm (NTU-Exam)