[試題] 105-2 莊武諺 代數導論二 第二次小考

看板NTU-Exam作者 (math mad)時間8年前 (2017/04/28 21:20), 8年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰代數導論二 課程性質︰數學系必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰106/3/23 考試時限(分鐘):30分鐘 試題 : You may assume Gauss's Lemma. 1.(25 points) Let R be an integral domain with quotient field F and let p(x) be a monic polynomial in R[x]. Assume that p(x) = a(x)b(x) where a(x) and b(x) are nonconstant monic polynomials in F[x] of smaller degrees. Prove that if ﹁(a(x)∈R[x]) then R is not a UFD. 2.(25 points) Prove that if f(x) and g(x) are polynomials with rational coefficients and p(x) = f(x)g(x) has integer coefficients, then the product of any coefficient of f(x) with any coefficients of g(x) is an integer. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1493385600.A.561.html ※ 編輯: ntumath (140.112.253.33), 05/03/2017 23:53:44
文章代碼(AID): #1P0q60LX (NTU-Exam)