[試題] 105-2 莊武諺 代數導論二 第二次小考
課程名稱︰代數導論二
課程性質︰數學系必修
課程教師︰莊武諺
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰106/3/23
考試時限(分鐘):30分鐘
試題 :
You may assume Gauss's Lemma.
1.(25 points) Let R be an integral domain with quotient field F and let
p(x) be a monic polynomial in R[x]. Assume that p(x) = a(x)b(x)
where a(x) and b(x) are nonconstant monic polynomials in F[x] of
smaller degrees. Prove that if ﹁(a(x)∈R[x]) then R is not a UFD.
2.(25 points) Prove that if f(x) and g(x) are polynomials with rational
coefficients and p(x) = f(x)g(x) has integer coefficients, then the
product of any coefficient of f(x) with any coefficients of g(x) is
an integer.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105
※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1493385600.A.561.html
※ 編輯: ntumath (140.112.253.33), 05/03/2017 23:53:44