[試題] 105-2 莊武諺 代數導論二 第一次小考

看板NTU-Exam作者 (math mad)時間8年前 (2017/04/28 18:28), 8年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰代數導論二 課程性質︰數學系必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰106/3/9 考試時限(分鐘):30分鐘 試題 : 1.(20 points) Definition: A discrete valuation ⅴon a field Q is a function ⅹ ⅴ : Q ---> Z satisfying : (1) ⅴ( xy ) = ⅴ( x ) + ⅴ( y ), (2) ⅴ is surjective, and (3)ⅴ( x + y ) ≧ min( ⅴ(x), ⅴ(y)). Definition : An integral domain R is called a discrete valuation ring(DVR) if there exists a discrete valuation ⅴon its quotient field Q such that ⅹ R = { x ∈ Q | ⅴ(x) ≧0 )} ∪{0}. Now let R be a DVR and Q be its quotient field. Prove that the set x {x ∈Q | ⅴ(x) > 0 } ∪{0} is the unique maximal ideal of R. 2.(15 points) Show that the element 7∈Z[√-13] is irreducible but is not prime. 3.(15 points) In class we have seen that the ring Z[i] of Gaussian integers 2 2 is a Euclidean domain with norm N(a+bi) = a + b . Prove that the quotient ring Z[i]/I is finite for any nonzero ideal I of Z[i]. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.121 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1493375294.A.4E3.html ※ 編輯: ntumath (140.112.25.105), 04/28/2017 21:31:45
文章代碼(AID): #1P0na-JZ (NTU-Exam)