[試題] 105-2 鄭明燕 機率導論 第三次小考

看板NTU-Exam作者 (^www^)時間8年前 (2017/04/28 17:48), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰機率導論 課程性質︰數學系必修 課程教師︰鄭明燕 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/4/6 考試時限(分鐘):30分鐘 試題 : Quiz 3 (2017/4/6) 1. Consider a probability space (Ω,A,P). (a) (12%) State the definition of a random variable X. (b) (12%) If X has distribution function F, what is the distribution function of the random variable Y = aX + b, where a,b are constants, a ≠ 0 ? 2. (20%) People enter a gambling casino at a rate of 1 every 2 minutes. What is the probability that at least 4 people enter the casino between 12:00 and 12:05 ? 3. Let X be a geometric random variable with parameter p. (a) (12%) Find Var(X). (b) (12%) Find E[1/X]. (c) (12%) Show that P{ X = n+k | X > n } = P{ X = k }. 4. When coin 1 is flipped, it lands on head with probability 0.4; when coin 2 is flipped, it lands on heads with probability 0.7. One of these coins is randomly chosen and flipped 10 times. (a) (10%) What is the prbability that the coin lands on heads on exactly 7 of the 10 flips ? (b) (10%) Given that the first of these ten flips lands heads, what is the conditional probability that exactly 7 of 10 flips land on heads ? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1493372938.A.E78.html
文章代碼(AID): #1P0n0Avu (NTU-Exam)