[試題] 105上 陳俊全 常微分方程導論 期中考

看板NTU-Exam作者 (fascination)時間9年前 (2017/01/15 15:15), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰常微分方程導論 課程性質︰數學系必修 課程教師︰陳俊全教授 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰105.11.11 考試時限(分鐘):2 hours 試題 : Part I. 1. (40 pts) Solve the following equations. e^(x-y) (1) dy = --------- dx. y + 3 √y √x (2) (----- + x)dx + (----- - y)dy = 0. √x √y x^3 + x(y+1) (3) y' = --------------, y(1) = 1. x^2 + 1 x^2 + y^2 (4) y' = -----------, y(2) = 1. xy y^2 + 1 (5) y' = --------------. y^3 + y + xy 2. (20 pts) Solve the following equations. (1) y'' + 6y' + 9y = 0, y(1) = 1, y'(1) = -1. (2) y'' + 2y' + 3y = sin t. Part II. Choose 2 from the following 3 problems 3. (20 pts) Let T(t) satisfy Stefan's law of cooling dT 4 4 ---- = a - T , T(0) = 1, dt where a is a constant greater than 1. (1) Show that T(t) is increasing for t > 0 and lim T(t) = a. t→∞ dy 3 (2) Let y(t) satisfy ---- = 4a (a-y), y(0) = 1. Show that y(t) > T(t) for dt t > 0. 4. (20 pts) Let t ψ(t) = 0, ψ (t) = ∫ sψ(s)ds + 3, n = 0, 1, 2, 3,... 0 n+1 0 n (a) Show that 0 ≦ ψ(t) ≦ 6 for 0 ≦ t ≦ 1. n (b) Show that lim ψ(t) exists for 0 ≦ t ≦ 1. n→∞ n (c) Find lim ψ(t) for 0 ≦ t ≦ 1. n→∞ n 5. (20 pts) Show that if ∂N ∂M ----- - ----- ∂x ∂y --------------- = H(xy) xM - yN for some function H, then the equation M(x, y)dx + N(x, y) dy = 0 has an integrating factor of the form μ(xy). Give the general formula for μ(xy). -- 正妹也不過就是一組物質波方程式的特解罷了 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.211.228 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1484464505.A.8C6.html
文章代碼(AID): #1OUo5vZ6 (NTU-Exam)