[試題] 105上 林惠雯 代數一 第一次小考

看板NTU-Exam作者 (fascination)時間9年前 (2016/10/04 00:09), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰代數一 課程性質︰數學系選修(可抵必修代數導論一) 課程教師︰林惠雯教授 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰105.10.3 考試時限(分鐘):50 mins 試題 : 1. Show that a subgroup of a cyclic group is cyclic. 2. Show that if d|n, then there exist unique H≦Z_n such that |H| = d. 3. (a) Let H,K≦G. Show that H∩K≦G, and HK≦G if HK = KH. (b) Let H≦G and K is normal in G. Show that H∩K is normal in H and K is normal in HK with HK≦G. (c) Let H≦G and K is normal in G. Show that HK/K~H/H∩K. 4. Show that N is normal in G and G/N is abelian if and only if the commutator [G,G]≦N. 5. Let G be a finite group and n be a positive positive integer with n||G|. Whether does there exist a subgroup H of G such that |H| = n? Prove it or disprove it by giving a counterexample. -- 正妹也不過就是一組物質波方程式的特解罷了 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.211.228 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1475510998.A.D19.html
文章代碼(AID): #1NyeBMqP (NTU-Exam)