[試題] 105上 林惠雯 代數一 第一次小考
課程名稱︰代數一
課程性質︰數學系選修(可抵必修代數導論一)
課程教師︰林惠雯教授
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰105.10.3
考試時限(分鐘):50 mins
試題 :
1.
Show that a subgroup of a cyclic group is cyclic.
2.
Show that if d|n, then there exist unique H≦Z_n such that |H| = d.
3.
(a)
Let H,K≦G. Show that H∩K≦G, and HK≦G if HK = KH.
(b)
Let H≦G and K is normal in G. Show that H∩K is normal in H and K is normal in HK with HK≦G.
(c)
Let H≦G and K is normal in G. Show that HK/K~H/H∩K.
4.
Show that N is normal in G and G/N is abelian if and only if the commutator [G,G]≦N.
5.
Let G be a finite group and n be a positive positive integer with n||G|. Whether does there exist a subgroup H of G such that |H| = n? Prove it or disprove it by giving a counterexample.
--
正妹也不過就是一組物質波方程式的特解罷了
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.211.228
※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1475510998.A.D19.html