[試題] 104暑 蔡雅如 微積分甲下 第二次小考

看板NTU-Exam作者 (翔子)時間9年前 (2016/08/26 14:51), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰蔡雅如 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2016/08/19 考試時限(分鐘):50 試題 : 1. (20%) Classify the quadric surface cx^2 + 2y^2 - 2cx + 47 - z = 0 2. (30%) Consider a smooth space curve →r(t) = <t-1, t^2, (3)^(1/2)t+3^(1/2)> (a) Find the curvature of the curve, κ(t). (b) Find the unit tangent, unit normal, and the binormal vectors →T(t), →N(t), →B(t). (c) Find the osculating plane of →r(t) at a general point. What can you say about the curve? 3. (20%) Find the first partial derivatives of the following functions: (a) f(x,y) = (2y)^(3x), for y > 0, (b) f(x,y,z) = (x^2 + y^3 + z^4)^(1/3) at (0,0,0). 4. (30%) Let f(x,y) = { x^3/(x^2+y^2), (x,y) ≠ (0,0) 0, (x,y) = (0,0) (a) Is f(x,y) continuous at (0,0)? (b) Compute f_x(0,0) and f_y(0,0). (c) Write down the linear approximation L(x,y) of f(x,y) at (0,0). (d) Compute lim (x,y)→(0,0) |f(x,y) - L(x,y)|/(x^2+y^2)^(1/2). is f(x,y) differentiable at (0,0)? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.106 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1472194263.A.ACB.html
文章代碼(AID): #1Nl-RNhB (NTU-Exam)