[試題] 104暑 顏文明(陳宏代課) 微積分甲上 第四次小考

看板NTU-Exam作者 (翔子)時間9年前 (2016/07/22 01:26), 9年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰微積分甲上 課程性質︰必修 課程教師︰顏文明(陳宏代課) 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2016/07/21 考試時限(分鐘):90 試題 : Part I (30%) Chapter 6.1-6.3 1. (15%) Find the number b such that the line y = b divides the region bounded by the curves y = x^2 and y = 4 into two regions with equal area. 2. (15%) Find the volume generated by rotating the region bounded by the given curves about the specified axis. 2a. (5%) Sketch the region which is bounded above by y = 4x - x^2 and below y = 3. Also, mark the line x = 1 in your graph. 2b. (10%) Find its volume. Part II (40%) Evaluate the following integrals (Chapter 7.1-7.4) 3. (8%) Determine a and n in the following identity ∫tan(x)^5 dx - ∫tan(x)^3 dx = (tan(x)^n)/a 註:助教表示,如果覺得中間的 - 應該要是 + 的話可以自己改,算得出來就可以 4. (8%) ∫cos(x)^2 tan(x)^3 dx. 5. (8%) ∫ln(3x)^2 dx. 6. (8%) ∫1/((x^2 + 1)(x - 2)) dx. 7. (8%) ∫1/(1+e^x) dx. Part III Evaluate the following integrals (Chapter 7.5-7.8) (30%) 8. (16%) Find ∫ln(x^2 + x + 1)/x^2 dx 9. (14%) For each of the following integrals, state whether it is convergent or divergent and give your reasons. (a) (7%) ∫1 to ∞ x^3/(ln(x) + x^4) dx (b) (7%) ∫0 to ∞ dx/(x^3 + x^(1/2)) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 175.180.245.56 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1469122005.A.529.html ※ 編輯: shouko (175.180.245.56), 07/22/2016 01:27:18
文章代碼(AID): #1NaGNLKf (NTU-Exam)