[試題] 104上 江金倉 高等統計推論一 第四次小考

看板NTU-Exam作者 (sam)時間9年前 (2016/02/11 15:54), 9年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰高等統計推論一 課程性質︰數學系選修 課程教師︰江金倉 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2016/01/04 考試時限(分鐘):11:20~12:10 試題 : 1. (10%) Let (f (t),f (t)) and (S (t),S (t)) be the probability density T C T C functions and the survivor functions of continuous random variables (T,C) with support (0,∞). Derive the joint p.d.f of X = min{T,C} and δ=I(X = T) under the independence of T and C. δ 1-δ f (x,δ)=[S (x)f (x)] [S (x)f (x)] X,δ C T T C 2. Let U ,...,U ,... be independent random variables from Uniform(0,1) and X 1 n have probability density function P(X=x) = (1/[(e-1)x!])I (x). {1,2,3,...} (2a) (8%) Find the distribution of Z = min{U ,...,U }. 1 X k (2b)(8%) Define N = min{k:S >1} with S = Σ U .Compute the expectation of N. k k i=1 i 3. (10%) Let X ,...,X be a random sample from the probability density function 1 n a-1 a f (x) = (ax /θ )I (x) and X <...< X stand for the corresponding X {(0,θ)} (1) (n) order statistics. Find the joint distribution of (X /X , X /X ,... (1) (2) (2) (3) T , X /X ) . (n-1) (n) 4. (7%)(7%) Give examples to show that convergence in probability cannot imply 1 the convergence almost surely and convergence in L . T 5. (10%) Let (X ,...,X ) have a multinomial distribution with n trials and the 1 m cell probabilities p ,...,p . Derive the probability distribution of X 1 m i conditioning on X = x for i≠j. j j 6. (3%)(7%) State and show the Holder's inequality. T T T 7. (10%) Let X = (X ,X ) be a p-variate normal distribution with mean vector 1 2 μ and variance-covariance matrix Σ. Suppose that Σ is positive definite. Derive the distribution of X conditioning on X = x . 1 2 2 8. (5%)(5%) Let X ,...,X be a random sample with a continuous distribution 1 n function F(X) and X ,...,X be the corresponding order statistics. (1) (n) Compute the mean and variance of F(X ), i=1,...,n. (i) Note that F(X ) ~ U , where U ,...,U ~Uniform(0,1). (i) (i) 1 n 9. (10%) Let X ,...,X be a random sample from a normal distribution with mean 1 n 2 _ n 2 n _ 2 μ and variance σ , X = Σ X /n, and S = Σ (X - X ) /(n-1). Find a n i=1 i n i=1 i n 2 2 2 p function g(‧) of S such that E[g(S )|(μ,σ )] = σ for (n + p) > 1. n n 2 p/2 Hint: Try E[(S ) ]. n -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 58.115.123.62 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1455177282.A.F10.html ※ 編輯: SamBetty (58.115.123.62), 02/11/2016 15:56:36
文章代碼(AID): #1Ml3v2yG (NTU-Exam)