[試題] 104上 江金倉 高等統計推論一 第一次小考

看板NTU-Exam作者 (sam)時間10年前 (2016/02/01 20:59), 10年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰高等統計推論一 課程性質︰數學系選修 課程教師︰江金倉 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/10/22 考試時限(分鐘):16:30~17:20 試題 : 1. (15%) Let (Ω,A,P) be the probability space, A ,..., A ,...∈A with 1 n ∞ P(A ) = 1 for all i. Show that P(∩ A ) = 1. i i=1 i 2. (10%) Let X ,...,X ,... be random variables. Show that inf X is a random 1 n n n variable. 3. (7%)(8%) State and prove the second Borel-Cantelli lemma. 4. (15%) Find an example in which two random variables have different distributions but the same moments. 5. (15%) Find an example in which the moment generating function does not exist but the moments exist. 2 6. (15%) Suppose that E[X ] < ∞ and X = min{X,C} for a constant C. Show that C Var(X ) ≦ Var(X). C 7. (7%)(8%) Let X have a probability density function p f(x|θ) = h(x)c(θ)exp(Σθ t (x)) with the natural parameter space j=1 j j ∞ p H = {θ:∫ h(x)exp(Σθ t (x)) dx < ∞}. Derive the expectation and -∞ j=1 j j p variance of Σ t (X). i=1 i E[e^(tΣt_i(X))]=c(θ)/c(θ+t)∫h(x)c(θ+t)exp(Σ(θ+t)t_i(x))dx -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 58.115.123.62 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1454331596.A.8BB.html ※ 編輯: SamBetty (58.115.123.62), 02/01/2016 21:04:14
文章代碼(AID): #1MhrRCYx (NTU-Exam)