[試題] 104-1 陳君明 橢圓曲線密碼學 小考

看板NTU-Exam作者 (sam)時間10年前 (2015/10/18 16:31), 10年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰橢圓曲線密碼學 課程性質︰數學系選修 課程教師︰陳君明 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/10/06 考試時限(分鐘):5:30~6:30 試題 : 1. A group is a set G and an operation * for which the following axioms hold: ‧For any a,b∈G, the element a*b∈G. ‧......(please complete the definition) (6%) 2. (a) Show that (Z*,× mod 7) is a cyclic group. (6%) 7 (b) Show that (Z*,× mod 9) is a cyclic group. (6%) 9 (c) Show that (Z*,× mod 8) is not a cyclic group. (6%) 8 3. Suppose m is the multiplicative inverse of 52 in the Galois field F (GF ) 313 313 (a) Use the Extended Euclidean Algorithm to find m. (6%) (b) Describe how to use the Fermat Little Thorem to find m. (6%) 3 4. (a) How many elements are there in the quotient ring F [x]/<x + x + 1>?(6%) 2 2 3 (b) Find the multiplicative inverse of x + x in F [x]/<x + x + 1>. (6%) 2 2015 5. (a) Evaluate 3 mod 109. (6%) 2015 (b) Evaluate 3 mod 108. (6%) 3 6. (a) Factor x + 1 over R,C,F ,F ,F respectively. (10%) 2 3 7 16 (b) Factor x + x over F . (6%) 2 (c) How many irreducible polynomials of degree 5 over F ? (6%) 2 (d) How many irreducible polynomials of degree 6 over F ? (6%) 2 7. (a) Find an irreducible polynomial of degree 3 over F . (6%) 5 (b) Construct the Galois field F and explain its operations. (6%) 125 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 58.115.123.62 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1445157091.A.587.html ※ 編輯: SamBetty (58.115.123.62), 11/03/2015 20:39:41
文章代碼(AID): #1M8rZZM7 (NTU-Exam)