[試題] 103下 呂學一 應用代數 期末考消失

看板NTU-Exam作者時間8年前 (2015/06/27 00:54), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串1/1
課程名稱︰應用代數 課程性質︰選修 課程教師︰呂學一 開課學院:電機資訊 開課系所︰資訊工程 考試日期(年月日)︰2015/06/26 考試時限(分鐘):180 試題 : 總共十一題,每題十分,可按任何順序答題。只能參考個人事先準備的A4單頁大抄。前五 題都是一個可能對也可能不對的敘述。如果你覺得對,請證明它是對的,如果你覺得不對 ,請證明它是錯的。課堂上證過的定理,或是提過的練習題,都可以直接引用。 第一題 Let S,S',S" be coordinate systems with coincided x-axes, parallel y-axes, and parallel z-axes. At time 0 with respect to all three clocks, S,S',S" coincide. Suppose that system S"(respectively, S" and S") moves at a postive velocity v_1 (respectively, v_2 and v_3) measured by S(respectively, S' and S). Thus, the correspondence of coordinates from S(respectively,S' and S) to S'(respectively, S" and S") is described by T_(v_1) (respectively,T_(v_2) and T_(v_3). If T_(v_3) = T_(v_2)T_(v1), then v_1 + v_2 v_3 = ------------ 1 + v_1v_2 第二題 Find a generalized eigenbasis of M_(2x2)(C) for T∈L( M_(2x2)(C),M_(2x2)(C)) with T(A) = 2A+A^t for each A∈M_(2x2)(C) 第三題 Let T∈L(V,V) for vector space V with dim(V) < ∞. If βis a cycle of generalized eigenvectors of T corresponding to eigenvalue λof T, then span(β) is a T-invariant subspace of V. 第四題 Let T∈L(V,V) for vector space V with dim(V) < ∞ over C. Let λ_1,...,λ_k be the distinct eigenvalues of T. If T is diagonalizable, then rank( T-(λ_i)(I_v) ) = rank( (T-(λ_i)(I_v))^2 ) holds for each i = i,...,k 第五題 If J is an n×n real matrix in Jordan canonical form,then J and J^t are similar. 第六題 Find a Jordan canonical form of ┌ ┐ │ 3 -1 -1 │ │ 1 0 -1 │ │-2 5 4 │ └ ┘ 第七題 Determine which of the following four matrices A,B,C,D are similar: ┌ ┐ ┌ ┐ │ 3 -1 -1 │ │ 0 1 2 │ A= │ 1 0 -1 │ , B= │ 0 1 1 │ , │-2 5 4 │ │ 0 0 2 │ └ ┘ └ ┘ ┌ ┐ ┌ ┐ │ 0 -3 7 │ │ 0 1 -1 │ C= │-1 -1 5 │ , D= │-4 4 -2 │ │-1 -2 6 │ │-2 1 1 │ └ ┘ └ ┘ 第八題 Find the minimal polynomial of ┌ ┐ │ 3 0 1 │ │ 1 0 -1 │ │ 0 0 2 │ └ ┘ 第九題 Let T∈L(V,V) for vector space V with dim(V) < ∞. Prove that if U is a T-invariant subspace of V, then f_(T_U) | f_T(t). 第十題 Let T∈L(V,V) for vector space V with dim(V) < ∞. Let U be the T-cyclic subspace of V generated by a nonzero vector x∈V with dim(U) = k. Prove both of the following statements: k-1 1. {v,T(v),...,T (v)} is a basis of U k k-1 2. -T (v) = a_0 v + a_1 T(v)+...+a_(k-1) T (v) implies k k-1 k (-1) f_(T_U) (t) = a_0 + a_1t +...+a_(k-1) t +t . 第十一題 Prove Cayley-Hamilton Theorem: f_T(T) = T_0. (Your proof may directly use the statements of Problems 9 and 10.) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.251.92 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1435337668.A.788.html

06/27 01:08, , 1F
已收資訊系精華區!
06/27 01:08, 1F
文章代碼(AID): #1LZOF4U8 (NTU-Exam)