[試題] 103-1 王金龍 複變數函數論 期末考

看板NTU-Exam作者 (sam)時間11年前 (2015/01/16 18:13), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串1/1
課程名稱︰複變數函數論 課程性質︰數學系大三必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/01/08 考試時限(分鐘):12:30 ~ 3:20 試題 : There are four problems, each problem deserves 25 points. 1. Define the gamma function Γ(s) for Re(s) > 0 and prove its analytic continuation to s∈C and functional equation Γ(s)Γ(1-s) = π/sinπs. Find its zeros and poles as well as the corresponding residues. Hint: Prove first that a-1 ∞ v π ∫ ———dv = ————. 0 1+v sinπa 2. (a) Define the Riemann zeta function ζ(s) for Re(s) > 1 and discuss its analytic continuation to s∈C with the only simple pole at s = 1. (b) Show that ζ(s)≠0 for Re(s) > 1, and all zeros of ζ(s) for Re(s) < 0 are precisely s = -2n, n∈N. (Hint: On way to do it is to consider ξ(s) := -s/2 π Γ(s/2)ζ(s) for Re(s) > 1 and prove its functional equations ξ(s) = 2 ∞ -πn t ξ(1-s) through the one for Θ(t) := Σ e where t > 0.) n=-∞ 3. (a) Prove the Schwarz Lemma for f : D→D with f(0) = 0 and use it to determine the group Aut(D). (b) Assuming the Schwarz-Christoffel formula from H to a polygon domain P. Duduce the formula for a conformal map f:D→P by way of an explicit conformal map g:D→H. 2 3 4. (a) Show that (ρ') = 4ρ - g ρ - g for some g , g ∈C. (b) Let Ω⊂C be a 2 3 2 3 3 simply connected domain not containing any root of 4x - g x - g . Show that 2 3 ω ds I(ω) := ∫ ——————————, ω, ω∈Ω 3 0 ω √(4s - g s - g ) 0 2 3 defines an inverse of ρ(z+a) for some a. (Bonus) Write down something you have well prepared but not shown above. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 58.115.123.62 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1421403183.A.107.html

01/18 23:34, , 1F
已收錄
01/18 23:34, 1F
文章代碼(AID): #1KkEGl47 (NTU-Exam)