[試題] 103-1 王金龍 複變函數論 期中考

看板NTU-Exam作者 (熊殘)時間11年前 (2014/11/13 16:25), 編輯推噓2(201)
留言3則, 3人參與, 最新討論串1/1
課程名稱︰複變函數論 課程性質︰數學系必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2014年11月13日 考試時限(分鐘):170分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. (15) Prove Goursat's theorem for a triangle and then deduce from it Cauchy's theorem for arbitrary piecewise C^1 closed curves inside a disk. 2. (15) Prove that ∫(0 to ∞) (sin(x)/x) dx = π/2. 3. (15) Prove that for ξ∈R, ∫(-∞ to ∞) e^(-2πixξ)/(1+x^2)^2 dx = π/2 (1+2π|ξ|) e^(-2πξ). 4. (15) Prove that ∫(0 to 1) log(sin(πx)) dx = -log2. 5. (15) Determine the number of roots of the equation z^6 + 8z^4 + z^3 + 2z+3=0 in each quadrant of the complex plane. Determine also the number of zeros inside each annulus k <= |z| < k+1 with k∈Z(>=0). 6. (10) Let f be an entire function such that for each a∈C at least one Taylor coefficient at z=a is zero. Prove that f is a polynomial. 7. (10) If f is entire of growth order ρ is not integral, show that f assumes every value w∈C infinitely many times. Give an example of such f. 8. (10) Does Cauchy's residue theorem hold for functions with not just poles but also isolated essential singularities? Justify your answer. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.244.16 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1415867111.A.A1D.html

11/13 19:10, , 1F
234只能用contour哭哭啦
11/13 19:10, 1F

11/14 18:25, , 2F
考試時間是12:30~3:20
11/14 18:25, 2F

11/17 01:28, , 3F
已收錄
11/17 01:28, 3F
文章代碼(AID): #1KP6hdeT (NTU-Exam)