[試題] 102上 陳俊全 常微分方程導論 期中考

看板NTU-Exam作者 (sam)時間12年前 (2014/02/07 19:05), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰常微分方程導論 課程性質︰數學系大二必修 課程教師︰陳俊全 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2013/11/12 考試時限(分鐘):15:30~17:20 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 5 from the following 6 problems. (1) Solve the equations. (a) (1+x)y' + 2y = cosx, y(1) = 0. 4x^2 - 2xy + y^2 (b) y' = -------------------. 2x^2 (2) Solve the equations. (a) y' + y^2 + y^3 = 0, y(0) = 1. (b) y' + y/x + x^2 = 1, y(1) = 2. δf (3) Let ψ(t) be the solution of y' = f(y), y(0) = 0.5, where —— is δy continuous, f(0) = f(1) = 0, f(y) < 0 for 0 < y < 1. Show that (a) 0 < ψ(t) < 1 for t > 0; (b) lim ψ(t) = 0. t→∞ (4) (a) Solve 2y'' + 5y' - 3 = 0, y(0) = 0, y'(0) = 1. 2 '' ' (b) Find all solutions of t y + 4ty + 2 = 0, t > 0. (5) Consider a pond that initially contains 20 million liters of fresh water. The water containing an undesirable chemical flows into the pond at the rate of 10 million(liter/year) and the mixture in the pond flows out at the same rate. The concentration γ(t) of chemical in the incoming water varies periodically with time according to the expression γ(t) = 2 + sin2t (g/liter). Let Q(t) denote the amount of chemical in the pond at time t. Construct a mathematical model of this flow process and determine Q(t). Also find the limit of the average amount of Q(t): 1 L lim — ∫ Q(t)dt. L→∞ L 0 a (6) Consider the equation y' = |y(t)| , y(0) = 0. (a) Prove that the equation has at most one solution if a > 1. (b) Show that the equation has more than one solution if 0 < a < 1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.185.135.96 ※ 編輯: SamBetty 來自: 111.185.135.96 (02/07 19:10) ※ 編輯: SamBetty 來自: 111.185.135.96 (02/07 19:13)
文章代碼(AID): #1IzBtzRN (NTU-Exam)