[試題] 99上 張勝凱 計量經濟理論一 期中考

看板NTU-Exam作者 (tf41128)時間15年前 (2011/01/21 19:29), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串1/1
課程名稱︰計量經濟理論一 課程性質︰必修 課程教師︰張勝凱 開課學院:社會科學院 開課系所︰經濟學研究所 考試日期(年月日)︰2010/11/10 考試時限(分鐘):120mins 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Problem 1.(25 points (5,10,10)) ︿ ︿ ︿ Let θ=(θ1,θ2)' be a √N-asymptotically normal estimator for θ=(θ1,θ2)'. ︿ ︿ ︿ Let γ=2*θ1*θ2^2 be an estimator of γ=2*θ1*θ2^2. ︿ 1. Is γ a consistent estimator of γ ? Explain. ︿ ︿ 2. Find Avar(γ) in terms of θ and Avar(θ). ︿ ︿ 3. If, for a sample of data,θ=(1,2)' and Avar(θ) is estimated as ┌ ┐ │1 -0.5│ │-0.5 2 │ └ ┘ ︿ Find the asymptotic standard error of γ. Problem 2. (30 points (10,10,10)) Let E(y|x,q)= x*β+γ* q , thus y=x*β+γ* q+ v, where E(v|x,q)=0. 1. Suppose that we can observe y and both x and q, would OLS estimators of y on x and q provide an unbiased estimators of β ? Why or why not? Would OLS estimators of y on x and q provide an best linear unbiased estimator( BLUE) ofβ ? Why or why not? 2. Suppose we do not observe q, under what conditions , would OLS estimators of y on x provide an unbiased estimators ofβ ? Why? 3. Suppose there is a variable z where E(q|z)=δ*z. Suppose also that E(y|z,q,z)=E(y|x,q), would OLS estimators of y on x and z provide an unbiased estimators ofβ ? Why or why not? Problem 3. (45 points (8,8,5,8,8,8)) -1 Recall the long regression model y=X1*β1+X2*β2+ε. Let N1≡X1(X1'X1) X1', * * M1≡I-N1, X2 ≡M1*X2 and y ≡M1*y.Let b1 and b2 be an OLS estimatiors ofβ1 andβ2 in equation (1),e is the residual term correspondingly. That is ︿ y=X1*b1+X2*b2+e, y =X1*b1+X2*b2 1. Write down the normal equations (first order conditions) for OLS estimators b1 and b2. *' *-1 *' 2. Show that b2=(X2 X2 ) X2 y. 3. Show M1e=e. ︿ ︿ 4. Show y'y= y'y +e'e. * 5. Find the residual term of the regression y on X1. * * 6. Find the residual term of the regression y on X2 . -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.126.26

01/22 14:38, , 1F
已收至精華區:)
01/22 14:38, 1F
文章代碼(AID): #1DEMuany (NTU-Exam)