[試題] 99上 周青松 微積分甲上 期中考

看板NTU-Exam作者 (東區)時間15年前 (2011/01/16 03:29), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
課程名稱︰微積分甲上 課程性質︰必修 課程教師︰周青松 開課學院:管理學院、生農學院、理學院 開課系所︰工管系科管組、生機系、生工系、地質系 考試日期(年月日)︰2010/11/8 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 試題 : Warning : Each part from I - V is of 20 points. Please write down your answer in the answer sheets in detail as well as possible. I. |1+x^2 , x<1 A. Evaluate lim f(x) if it exists, where f(x)=| 3 , x=1 x→1               |4-2x , x>1 B. Give that g(x)=x^2-4x, evaluate the following limit if that exists. g(x)-g(2) lim ------. x→3 x-3 II. A. Determine the discontinuties, if any, of the following function |2x+1 ,x<=0 f(x)=| 1 ,0<x<=1.           |x^2+1 ,x>1 B. Prove that sinx lim---- = 1. x→0  x III.                                                        x    1 A. Find the drivative of the function f(x)=(----)^- . 1+x^2 2 B. Find the second derivative of the function y=x^1/2(tanx^1/2). IV. A. Suppose that f is differentiable on the interior of an interval I and continuous on all of I. Prove that (i)If f'(x)>0 for all x in the interior of I, then f increases on all of I. (ii)If f'(x)<0 for all x in the interior of I, then f decreases on all of I. (iii)If f'(x)=0 for all x in the interior of I, then f is constant on all of I. B. For the function |x^3 ,x<1 f(x)=| , determine the intervals on which f decreases and the    |1/2x+2 ,x=>1 intervals on which f decreases. V.Sketch the graph of f(x)=1/4x^4-2x^2+7/4 on [-5,5]. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.80 fanif:轉錄至看板 NTUBIME104HW 10/28 21:35
文章代碼(AID): #1DCVMsKC (NTU-Exam)