PTT
網頁版
登入/註冊
新聞
熱門文章
熱門看板
看板列表
作者查詢
最新文章
我的收藏
最近瀏覽
看板名稱查詢
批踢踢 PTT 搜尋引擎
看板
[
Math
]
討論串
[中學] 桃園98教甄
共 2 篇文章
排序:
最新先
|
最舊先
|
留言數
|
推文總分
內容預覽:
開啟
|
關閉
|
只限未讀
首頁
上一頁
1
下一頁
尾頁
#2
Re: [中學] 桃園98教甄
推噓
1
(1推
0噓 0→
)
留言
1則,0人
參與
,
最新
作者
GameKnight
(約定好的休息)
時間
14年前
發表
(2011/04/21 09:37)
,
編輯
資訊
0篇文章回應此文
0
內文有0個圖片
image
0
內文有0個連結
link
0
內容預覽:
n= 1000q+r = 999q + (q+r). = 37 * 27q + ( q+r ). n 為四位數且 n 為 37 倍數. [9999/37] - [999/37] = 270 - 27 = 243. --.
※
發信站:
批踢踢實業坊(ptt.cc)
. ◆ From: 220.133.
#1
[中學] 桃園98教甄
推噓
0
(0推
0噓 0→
)
留言
0則,0人
參與
,
最新
作者
qbay
(Q貝)
時間
14年前
發表
(2011/04/21 09:13)
,
編輯
資訊
0篇文章回應此文
0
內文有0個圖片
image
0
內文有0個連結
link
0
內容預覽:
設n為一個四位數,並設q、r分別為n除以1000的商數及餘數。. 試問有多少個n使得q+r可被37整除?. 這題我的算法是. n=1000q+r. q+r=37k k為整數且k>0. 1000<n=1000q+r<9999. 1000<37k+999q<9999. 然後代q=1~9 解出來所有的k再
首頁
上一頁
1
下一頁
尾頁