[複變] 兩題複變請教

看板Math作者 (萊恩)時間7年前 (2018/05/08 22:14), 編輯推噓1(102)
留言3則, 1人參與, 7年前最新討論串1/1
以下兩題複變請教>< 1.A Jordan curve in C can be considered as a subset of C homeomorphic to the unit circle. Now let Γ⊂C be a jordan cuvre and let φ:Γ→∂D be a homeomorphism. Show that, given ε>0, there exists δ>0 such that if a,b∈Γ and |a-b|<δ, then (a)One of the two circular arcs determined by φ(a) and φ(b) has strictly shorter length; (b)The diameter of σ_ab, the image of this shorter arc under φ^-1, is less than ε. 2.Let Ω be a bounded domain an let f:H+→Ω be bi-holomorphic. Let r>0 and ω_r(t)=f(re^it), 0<t<π and l(ω_r)=length of ω_r. Show that (a)ω_r(0+)=a and ω_r(π-)=b for some a,b∈Γ if l(ω_r)<∞. (b)There exist r_n↘0 such that l(ω_r_n)→0 as n→0. Hint: Consider the fact that Area(f(D_r(0)∩H+))≦Area(Ω) for all r>0, and use the integral form of Cauchy-Schwarz inequality. (c)Choose a sequence r_n↘0 such that l(ω_r_n)→0 and set ω_r_n(0+)=a_n, ω_r_n(π-)=b_n. Let Ω_n be the inside of the Jordan curve ω_r_n∪σ_anbn. Then diam(Ω)→0. 以上兩題(雖然有很多小題)@@ 請教各位了,希望附上過程,拜託>< -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 218.173.135.148 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1525788872.A.081.html

05/09 07:56, 7年前 , 1F
你可以參考Caratheodory theorem的證明
05/09 07:56, 1F

05/09 07:57, 7年前 , 2F
第二題的H+是上半平面?
05/09 07:57, 2F

05/09 08:01, 7年前 , 3F
沒事 請忽略我的第二句話..
05/09 08:01, 3F
文章代碼(AID): #1QyR3821 (Math)