LS soln w semi norm
J(x) = min norm( b-A*x, 2 )+c^2*norm( L*x, 2 )
A is m-by-n, rank(A) = n
L is p-by-n, rank(L) = p
what is the soln of this problem?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.136.61.144
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1513346412.A.68C.html
推
12/15 23:32,
8年前
, 1F
12/15 23:32, 1F
How do we express the soluntion in terms of SVD?
Say, for I(x) = min norm( b-A*x )+c^2*norm( x, 2 )
We have x = sum( f_i*u'*b*v_i, i = 1 to k ), k = rank(A)
' means transpose
f_i = s_i/( s_i^2+c^2 )
A = U*S*V'
Now how do we express the solution of J(x) being expressed
in a form like we have above for the soln of I(x)?
※ 編輯: saltlake (220.136.61.144), 12/16/2017 02:30:05
推
12/16 03:50,
8年前
, 2F
12/16 03:50, 2F
感謝回應
但該分解式是給參數項是 c^2*norm( x, 2 )
如果參數項是 c^2*norm( L*x, 2 ) 的時候呢?
※ 編輯: saltlake (114.44.192.117), 12/16/2017 07:52:51
推
12/16 10:13,
8年前
, 3F
12/16 10:13, 3F
推
12/16 13:21,
8年前
, 4F
12/16 13:21, 4F
→
12/16 13:22,
8年前
, 5F
12/16 13:22, 5F
手上沒那本書
不過,那個 L 矩陣是對 x 做數值差分,確實不是方陣
※ 編輯: saltlake (114.44.192.117), 12/16/2017 15:08:39
請問該書推導 GSVD 的過程可看出要求 L 非奇異方陣這限制的地方嗎?
畢竟 SVD 原本的概念裡面就是給矩陣分解,而且分解所得的奇異值也沒
限制應全為正數,而是非負數。概念上就是"奇異的部分"的奇異值是零。
以此猜測,增廣奇異值分解式必須限制其中一個矩陣為非奇異方陣有點怪。
※ 編輯: saltlake (114.44.192.117), 12/16/2017 18:59:09
→
12/16 19:02,
8年前
, 6F
12/16 19:02, 6F
→
12/16 19:03,
8年前
, 7F
12/16 19:03, 7F
推
12/16 19:34,
8年前
, 8F
12/16 19:34, 8F
→
12/16 19:42,
8年前
, 9F
12/16 19:42, 9F
→
12/16 19:44,
8年前
, 10F
12/16 19:44, 10F