[線代] (closed)三階方陣的Jordan form
有個問題想請教大家,但希望解題的方法能侷限在Friedberg線代4e的7.1節The Jordan
Canonical Form I,不涉及7.2節The Jordan Canonical Form II的點圖,因為不才希望
先掌握7.1節的內容。
2 2 3
問題:求矩陣A=( 1 3 3 )的Jordan form
-1 -2 -2
這題來自一位UCLA老師放在網路上的講義,權且貼出當作驗算:
http://www.math.ucla.edu/~jlindquist/115B/JCFBases.pdf
http://www.math.ucla.edu/~jlindquist/115B/JCF.pdf
以下是我的解法,用的是7.1節學到的東西:
先求characteristic polynomial,得det(A-tI)=-(t-1)^3,所以1是A唯一的eigenvalue,
而且它的algebraic multiplicity是3。令K為A對應1的generalized eigenspace、E為A對
應1的eigenspace。
目標:Find a basis β for K so that β is a disjoint union of cycles of
generalized eigenvectors of A corresponding to 1.
根據Theorem 7.4.(c),dim(K)等於1的algebraic multiplicity,也就是3,所以β只有
三種可能:
1.β is a disjoint union of three cycles of length 1.
2.β is a disjoint union of two cycles of respective lengths 1 and 2.
3.β is a cycle of length 3.
-2 -3
計算E,發現E=span{( 1 ),( 0 )},所以dim(E)=2,這讓我排除第一種可能,否則
0 1
三個cycle的initial vector會讓E有三個向量線性獨立,問題來了,不才之前碰到的都
是dim(E)=1,可以一口氣砍掉第一種可能跟第二種可能,接著就順順的做下去,但是現在
只能砍掉一個,我該怎麼辦?我大概看了那份UCLA的講義,它似乎暗示著只能走第二種可
能,那第三種可能是怎麼排除的呢?請賜教,謝謝。
※ 編輯: cyt147 (123.193.88.184), 12/09/2017 12:31:15
※ 編輯: cyt147 (123.193.88.184), 12/09/2017 12:32:31
剛剛算了一下,得到一個初步的結果:
It can be shown that if x is the end vector of a cycle of length 3,
0 0 0 0
then (0 0 0)x≠(0). 顯然,β沒有一個向量能滿足這個條件,因此不需考慮第三種
0 0 0 0
可能。這題似乎就這麼結束了,但我覺得不太踏實,會不會有矩陣不具備上述條件?我是
說,會不會有矩陣只能排除第一種可能?上述的美好結果具有一般性嗎?
※ 編輯: cyt147 (123.193.88.184), 12/09/2017 13:48:13
推
12/09 18:42,
8年前
, 1F
12/09 18:42, 1F

→
12/09 18:43,
8年前
, 2F
12/09 18:43, 2F
→
12/09 18:44,
8年前
, 3F
12/09 18:44, 3F
推
12/09 18:48,
8年前
, 4F
12/09 18:48, 4F
→
12/09 18:53,
8年前
, 5F
12/09 18:53, 5F
→
12/09 18:56,
8年前
, 6F
12/09 18:56, 6F
→
12/09 19:19,
8年前
, 7F
12/09 19:19, 7F
→
12/09 19:21,
8年前
, 8F
12/09 19:21, 8F
Thanks for your feedback. But you just repeated the result I had derived.
→
12/09 19:22,
8年前
, 9F
12/09 19:22, 9F
→
12/09 19:23,
8年前
, 10F
12/09 19:23, 10F
→
12/09 19:23,
8年前
, 11F
12/09 19:23, 11F
What I am concerned about is whether there is a matrix for which we can't
narrow down three possibilities of β to a single one. Something like an
existence problem. Anyway. Thanks.
※ 編輯: cyt147 (123.193.88.184), 12/10/2017 11:39:35
→
12/10 11:57,
8年前
, 12F
12/10 11:57, 12F
→
12/10 11:59,
8年前
, 13F
12/10 11:59, 13F

→
12/10 11:59,
8年前
, 14F
12/10 11:59, 14F

→
12/10 11:59,
8年前
, 15F
12/10 11:59, 15F

→
12/10 12:00,
8年前
, 16F
12/10 12:00, 16F
→
12/10 12:00,
8年前
, 17F
12/10 12:00, 17F

→
12/10 12:02,
8年前
, 18F
12/10 12:02, 18F
→
12/10 12:03,
8年前
, 19F
12/10 12:03, 19F
→
12/10 12:04,
8年前
, 20F
12/10 12:04, 20F
→
12/10 12:06,
8年前
, 21F
12/10 12:06, 21F
Somehow, you just can't leave the matrix A behind.
→
12/10 12:08,
8年前
, 22F
12/10 12:08, 22F
→
12/10 12:10,
8年前
, 23F
12/10 12:10, 23F
→
12/10 12:11,
8年前
, 24F
12/10 12:11, 24F
→
12/10 12:13,
8年前
, 25F
12/10 12:13, 25F
→
12/10 12:15,
8年前
, 26F
12/10 12:15, 26F
Noted with thanks. The reward will be given later on.
Still, the problem (not for the matrix A) remains to be solved, and I hope
someday I can figure it out after finishing section 7.2. Intuitively,
I think the question can be answered by the uniqueness of Jordan forms
up to the order of Jordan blocks.
This article is closed.
※ 編輯: cyt147 (123.193.88.184), 12/10/2017 17:28:28
推
12/10 22:01,
8年前
, 27F
12/10 22:01, 27F
→
12/10 22:01,
8年前
, 28F
12/10 22:01, 28F
→
12/10 22:01,
8年前
, 29F
12/10 22:01, 29F
推
12/10 22:11,
8年前
, 30F
12/10 22:11, 30F
→
12/10 22:11,
8年前
, 31F
12/10 22:11, 31F
推
12/10 22:18,
8年前
, 32F
12/10 22:18, 32F
→
12/10 22:41,
8年前
, 33F
12/10 22:41, 33F
→
12/10 22:41,
8年前
, 34F
12/10 22:41, 34F
→
12/10 22:41,
8年前
, 35F
12/10 22:41, 35F
推
12/10 23:08,
8年前
, 36F
12/10 23:08, 36F
→
12/10 23:09,
8年前
, 37F
12/10 23:09, 37F
→
12/10 23:12,
8年前
, 38F
12/10 23:12, 38F
→
12/10 23:16,
8年前
, 39F
12/10 23:16, 39F
→
12/10 23:17,
8年前
, 40F
12/10 23:17, 40F
→
12/10 23:24,
8年前
, 41F
12/10 23:24, 41F
→
12/10 23:25,
8年前
, 42F
12/10 23:25, 42F
→
12/10 23:26,
8年前
, 43F
12/10 23:26, 43F