H is a subgroup of a group G and g is in G.
K = gHg^(-1) = {ghg^(-1) | h ∈ H }
Prove (or disprove) that either H = K or H∩K = {e},
where e is the identity element of G.
沒有想到反例,先朝證明的方向
定義一個可能有幫助的映射
f_g : G → G , f_g(b) = gbg^(-1) for all b∈G
可證f_g是一個isomorphism (1-1, onto, homomorphic)
利用這個映射,可證明
K is a group 和 H and K are isomorphic
所以K必包含e
若g∈H,則 H = K
主要問題是 當g不在H裡面,是否必為H∩K = {e}
或者其實有反例?
請MATH版版友解惑,謝謝~
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.114.235.31
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1488526309.A.A45.html
推
03/03 16:24, , 1F
03/03 16:24, 1F
→
03/03 16:25, , 2F
03/03 16:25, 2F
→
03/03 18:52, , 3F
03/03 18:52, 3F
→
03/03 18:54, , 4F
03/03 18:54, 4F
推
03/03 19:28, , 5F
03/03 19:28, 5F