[線代] 線性回歸的一個證明

看板Math作者 (881 forever)時間9年前 (2016/08/29 15:29), 9年前編輯推噓0(004)
留言4則, 2人參與, 最新討論串1/1
H = X(X^tX)^-1X^t X : an N by d+1 real matrix X^t : the transpose of X X^-1: the inverse of X e : an N by 1 error real matrix w,w^*: an d+1 by 1 real matrix Suppose the inverse of (X^tX) exists Consider y = Xw^*+ e and y’= Xw Show that ||y-y'||^2 =||(I-H)e||^2 =(N-d-1)||e||^2 ps: The following has been proven. a. H^t=H b. H^k = H for any positive integer k c. (I-H)^k = (I-H) for any positive integer k d. trace(H)=d+1 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.220.35.20 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1472455798.A.462.html ※ 編輯: left (61.220.35.20), 08/29/2016 15:36:15

08/29 17:40, , 1F
How are w and w^* related?
08/29 17:40, 1F

08/29 18:17, , 2F
w^* is given in advance, so we can get a noisy
08/29 18:17, 2F

08/29 18:18, , 3F
signal y. And, then we want to search a w to get
08/29 18:18, 3F

08/29 18:19, , 4F
a estimate of y through y'.
08/29 18:19, 4F
文章代碼(AID): #1Nm-HsHY (Math)