[微積] 函數f在開區間I可微=>f'在I連續!?
按照一般教科書的定義
函數f在開區間I可微代表f在I的每一點c都有導數f'(c)
那f在I應該是很乖的,沒有jump、vertical tangent、sharp corner等等
連帶的,其導函數f'應該也很乖吧?我直覺會連續,但總覺得有問題
請問版友,怎麼造一個函數,它在開區間I可微,但導函數在I不連續?
我實在找不到反例,請解惑,謝謝!! P.S.我只學過初微
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 203.77.64.180
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1438441511.A.983.html
→
08/01 23:06, , 1F
08/01 23:06, 1F
→
08/01 23:12, , 2F
08/01 23:12, 2F
→
08/01 23:20, , 3F
08/01 23:20, 3F
→
08/01 23:20, , 4F
08/01 23:20, 4F
推
08/01 23:32, , 5F
08/01 23:32, 5F
→
08/01 23:33, , 6F
08/01 23:33, 6F
→
08/01 23:35, , 7F
08/01 23:35, 7F
→
08/01 23:36, , 8F
08/01 23:36, 8F
推
08/02 00:16, , 9F
08/02 00:16, 9F
推
08/02 00:29, , 10F
08/02 00:29, 10F
→
08/02 00:32, , 11F
08/02 00:32, 11F
推
08/02 00:34, , 12F
08/02 00:34, 12F
→
08/02 00:46, , 13F
08/02 00:46, 13F
→
08/02 01:27, , 14F
08/02 01:27, 14F
→
08/02 01:27, , 15F
08/02 01:27, 15F
推
08/02 01:39, , 16F
08/02 01:39, 16F
推
08/02 09:18, , 17F
08/02 09:18, 17F
→
08/02 13:39, , 18F
08/02 13:39, 18F
→
08/02 16:48, , 19F
08/02 16:48, 19F