[線代] negative definite
Consider the quadratic form
F(x,y,z,w)=λ(x^2+y^2+z^2+w^2)+2xy-2yz+2xz
find the real values of λsuch that
the quadratic form is negative definite.
解答:
[x] [λ 1 1 0 ] T
令X=[y] , A=[ 1 λ -1 0 ] , 則F(x,y,z,w)=X AX
[z] [ 1 -1 λ 0 ]
[w] [ 0 0 0 λ]
det(A-xI)=... =>得A的特徵值為λ,λ-2,λ+1,λ+1
因為F為negative definite form <=> A為negative definite form
<=>A的特徵值皆為負
所以當λ<-1 時,F為negative definite
我的問題是
如果用主子行列式(principle minors)來看
我假設若A為負定矩陣,則A的所有主子行列式的det值皆為負
(書上是只有說當A為正定時,主子行列式皆為正,
但我看證明過程,把正定改負定好像也是可以的)
那麼Δ_1(A)=λ<0
Δ_3(A)<0
Δ_4(A)=Δ_3(A)*λ>0
所以是我的假設錯了嗎???
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.253.24.52
※ 編輯: nobrother 來自: 111.253.24.52 (12/20 15:29)
推
12/20 16:44, , 1F
12/20 16:44, 1F
→
12/20 16:45, , 2F
12/20 16:45, 2F
→
12/20 16:45, , 3F
12/20 16:45, 3F
→
12/20 17:54, , 4F
12/20 17:54, 4F
推
12/20 19:18, , 5F
12/20 19:18, 5F
→
12/20 19:53, , 6F
12/20 19:53, 6F
→
12/20 20:11, , 7F
12/20 20:11, 7F
推
12/20 20:22, , 8F
12/20 20:22, 8F
→
12/21 00:47, , 9F
12/21 00:47, 9F
→
12/21 00:48, , 10F
12/21 00:48, 10F
→
01/02 15:38,
7年前
, 11F
01/02 15:38, 11F
→
07/07 11:44,
6年前
, 12F
07/07 11:44, 12F