Consider a random variable X taking values in the finite set
{1,...,2^k}, k∈Z+,
according to the following probability distribution:
2^(-k/4), if X=1
Px(x)=
[1-2^(-k/4)]/[(2^k)-1], if X≠1
Show that lim (1/k)H(x)=1 and lim (1/k)H2(x)=1/2
k→∞ k→∞
H2(x)的2是下標 Renyi entropy
謝謝!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 180.43.116.181
→
07/01 12:47, , 1F
07/01 12:47, 1F
※ 編輯: debdeb 來自: 180.43.116.181 (07/01 13:39)
→
07/01 13:39, , 2F
07/01 13:39, 2F
→
07/01 14:03, , 3F
07/01 14:03, 3F
→
07/01 14:42, , 4F
07/01 14:42, 4F
→
07/01 15:00, , 5F
07/01 15:00, 5F