[中學] 不等式求最小值
題目是 f(x) = x^2 + (9 / x^2) + 4 ,求最小值
我先把題目寫成
y = x^2 + (9 / x^2) + 4 = {(x^4 + 9) / x^2} + 4
{(x^4 + 9) / x^2} - y = -4
然後用算數平均大於等於幾何平均
4 ≧ 4y - y^2 => y^2 - 4y + 4 ≧ 0
然後當值為=0時產生的解會最小 得 y = 2
再來,我想說微分也可以求極值,所以取
f'(x) = 2x -18x^-3 = 2x ( 1 - 9x^-4 ) = 0
取 x^2 = +-3 中的 -3 代入 有極小值 得到 x = -2
(這時後代x^2 = +3 , 就可以 = 10 ,又有點不懂了)
請問前輩我這種想法哪邊有錯? 另外我看解答是寫10
(我高中不努力,現在看外文書覺得很有趣才開始努力看,有些觀念不懂
麻煩多擔待一下,謝謝)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 106.1.53.138
※ 編輯: basonety 來自: 106.1.53.138 (01/12 23:57)
※ 編輯: basonety 來自: 106.1.53.138 (01/12 23:57)
※ 編輯: basonety 來自: 106.1.53.138 (01/13 00:00)
→
01/13 00:01, , 1F
01/13 00:01, 1F
→
01/13 00:01, , 2F
01/13 00:01, 2F
→
01/13 00:01, , 3F
01/13 00:01, 3F
S大,因為我想他要求Y的最小值,所以我就把原式Y移項用算幾不等
的方式來套2元一次的公式來求極值
※ 編輯: basonety 來自: 106.1.53.138 (01/13 00:07)
→
01/13 00:10, , 4F
01/13 00:10, 4F
→
01/13 00:16, , 5F
01/13 00:16, 5F
→
01/13 00:17, , 6F
01/13 00:17, 6F
→
01/13 00:34, , 7F
01/13 00:34, 7F