[幾何] Regular Surface
Let x =f(v),z=g(v) a<v<b f(v)>0 be a parametrization for a
rugular plane curve C. Let S belong to R^3 be the set obtained by rotating
C about z axis. Show the parametrization of S and prove that S is a regular
surface.
請問他的參數化是x(u,v)=(f(v)cos u,f(v)sin u,g(v))嗎?
我知道要證regular surface 要證他可微,一對一,跟homeomorphism
可是課本上說可微跟1-1很簡單 可是我不會
所以想請問各位大大如何證明他是regular surface
謝謝!!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.136.71.234
推
01/13 16:06, , 1F
01/13 16:06, 1F
→
01/13 16:07, , 2F
01/13 16:07, 2F
推
01/13 16:35, , 3F
01/13 16:35, 3F
→
01/13 16:38, , 4F
01/13 16:38, 4F
※ 編輯: TampaBayRays 來自: 220.136.52.23 (01/14 16:14)