[幾何] Regular Surface

看板Math作者 (坦帕灣光芒)時間13年前 (2013/01/12 23:27), 編輯推噓2(202)
留言4則, 2人參與, 最新討論串1/1
Let x =f(v),z=g(v) a<v<b f(v)>0 be a parametrization for a rugular plane curve C. Let S belong to R^3 be the set obtained by rotating C about z axis. Show the parametrization of S and prove that S is a regular surface. 請問他的參數化是x(u,v)=(f(v)cos u,f(v)sin u,g(v))嗎? 我知道要證regular surface 要證他可微,一對一,跟homeomorphism 可是課本上說可微跟1-1很簡單 可是我不會 所以想請問各位大大如何證明他是regular surface 謝謝!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.136.71.234

01/13 16:06, , 1F
要用到(f,g)是regular plan curve吧
01/13 16:06, 1F

01/13 16:07, , 2F
然後參數化第二項應該是sin u不是sin v?
01/13 16:07, 2F

01/13 16:35, , 3F
homeomorphism
01/13 16:35, 3F

01/13 16:38, , 4F
你得一個變數應該寫錯了, f(v)sin u才對
01/13 16:38, 4F
※ 編輯: TampaBayRays 來自: 220.136.52.23 (01/14 16:14)
文章代碼(AID): #1GyO3ToK (Math)