[線代] rank space invertible 綜合題
Suppose that{x1,...,xp} is a set of linearly independent vectors in Rn
_ p _ _
with n>p. Define x=(1/p)Σxi and B=[(x1-x),...,(xp-x)]
i=1
Please answer the following questions with appropriate explanation.
(a)What is the rank of C(B)?
(b)is B'B invertible? B' is the transpose matrix of B
(c)What is the rank of the orthogonal subspace of C(B)?
(d)What is the number of nonzero eigenvalues of B ?
這一題卡住很久都沒有頭緒...只知道(c)是left nullspace 可是又跟(a)的rank
有關,麻煩了!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 36.239.251.43
→
01/12 02:40, , 1F
01/12 02:40, 1F
→
01/12 03:18, , 2F
01/12 03:18, 2F
→
01/12 03:18, , 3F
01/12 03:18, 3F
推
01/12 05:33, , 4F
01/12 05:33, 4F
→
01/12 05:35, , 5F
01/12 05:35, 5F
→
01/12 05:35, , 6F
01/12 05:35, 6F
→
01/12 20:47, , 7F
01/12 20:47, 7F
推
01/12 22:47, , 8F
01/12 22:47, 8F
推
01/12 22:49, , 9F
01/12 22:49, 9F
推
01/12 22:54, , 10F
01/12 22:54, 10F
→
01/13 00:47, , 11F
01/13 00:47, 11F
→
01/13 01:17, , 12F
01/13 01:17, 12F
→
08/13 17:23, , 13F
08/13 17:23, 13F
→
09/17 15:17, , 14F
09/17 15:17, 14F
→
11/10 11:18, , 15F
11/10 11:18, 15F
→
01/02 15:14,
7年前
, 16F
01/02 15:14, 16F
→
07/07 10:31,
6年前
, 17F
07/07 10:31, 17F