Re: [線代] skew-Hermitian matrix

看板Math作者 (Paul)時間13年前 (2012/11/28 10:19), 編輯推噓1(104)
留言5則, 1人參與, 最新討論串1/1
※ 引述《Taeyeon20 (ygyhjddsfdsfdsfdsgvsdv)》之銘言: : Let A be a 2x2 skew-Hermitian matrix. Prove that if A^n=I for some n : positive integer, then A^4=I. : 不知道如何證 希望有人教我 謝謝 A = ai b+ci -b+ci di where a,b,c,d are real characteristic eq. x^2 - (a+d)i x + (-ad+b^2+c^2) = 0 denote i x = u then u^2 + (a+d) u + (ad-b^2-c^2) = 0 Δ = (a+d)^2 - 4(ad-b^2-c^2) = (a-d)^2 + 4b^2 + 4c^2 (i) Δ=0, then a=d, b=0, c=0 and A^n = I, then a=d=1,-1, then A^4=I (ii) Δ>0, u has two distinct real roots, α,β x = -iα, -iβ because x^n - 1 is divided by characteristic polynomial then {α,β} = {1, -1} then x^2 + 1 = 0, A^2 + I = 0 hence, A^4 = I -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77

11/28 11:38, , 1F
謝謝
11/28 11:38, 1F

11/28 11:39, , 2F
感謝!!
11/28 11:39, 2F

11/28 12:00, , 3F
用p(A)v=p(eigenvalue)v想也可 v非零向量 A2階方陣
11/28 12:00, 3F

11/28 12:01, , 4F
eigenvalue是A的eigenvalue
11/28 12:01, 4F

11/28 12:02, , 5F
然後利用A矩陣的eigenvale 是pure imaginary number
11/28 12:02, 5F
文章代碼(AID): #1GjNIRch (Math)