[代數] unique factorization domain

看板Math作者 (坦帕灣光芒)時間13年前 (2012/11/12 01:43), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串1/1
1.Find a unique factorization domain D and let d is an irreducible element in D and let d belong to D such that d is an irreducible element in D but D/<d> is not a field. 2.Let D be a ED with Euclidean valuation v:D\{0}→N∪{0} Let I be a nontrivial ideal of D and let a belong to I be a nonzero element prove that: I=<a> iff v(a) = min{v(b)|b belong to I\{0}} 請版上的各位高手們幫我解答~ 謝謝!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.43.146.151 ※ 編輯: TampaBayRays 來自: 114.43.146.151 (11/12 01:49)

11/12 01:45, , 1F
雖然我看不太懂題目 但是 D=Z[x,y], d=x應該可以
11/12 01:45, 1F
文章代碼(AID): #1Gd-Emgy (Math)