[代數] ring, additive abelian group,field

看板Math作者 (ssss)時間13年前 (2012/11/09 13:02), 編輯推噓2(2014)
留言16則, 5人參與, 最新討論串1/1
不好意思又來問代數了^^ 1. For which of the following rings is it possible for the product of two nonzero elements to be 0? (A) The ring of complex numbers (B) The ring of integers modulo 11 (C) The ring of continuous real-valued functions on [0,1] (D) The ring {a+b*sqrt(2): a and b are rational numbers} (E) The ring of polynomials in x with real coefficients. Ans:C b/c a field has no 0 divisor, so (A), (B) were deleted. (D)我不知道是不是field, 感覺不是,但是因為平常在R的運算, ab=0 則 a=0 or b=0, 所以它沒有zero divisor. (E)也是和(D)類似的理由 但是我不知道... 為什麼(C)是對的 (D)是不是一個field 2. Up to isomorphism, how many additive abelian groups of order 16 have the property that x+x+x+x=0 for each x in G? Ans: 3 Q: 不是很懂要怎麼樣才算滿足x+x+x+x=0 Up to isomorphism, abelian groups of order 16有 2,2,2,2 2,2,4, 4,4 2,8 16. 要怎麼判斷哪一個有滿足x+x+x+x=0呢? 3. why "every field contains at least one finite subfield"is not true? Thanks a lot!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49

11/09 13:42, , 1F
第二題, for each x 所以不可以有元素的order超過4
11/09 13:42, 1F

11/09 13:46, , 2F
1C考慮一個函數的support在[0,0.5]另一個在[0.5,1]
11/09 13:46, 2F

11/09 13:47, , 3F
3考慮field with char = 0
11/09 13:47, 3F

11/09 13:48, , 4F
如果要包涵某個non-0 elt就要包含無窮多個
11/09 13:48, 4F

11/09 13:48, , 5F
i.e. x, 2x, 3x, ...
11/09 13:48, 5F

11/09 13:49, , 6F
1DE recall:subring of domain/field is domain
11/09 13:49, 6F

11/09 14:29, , 7F
謝謝~ 這樣1&2都瞭解了!! yeah!!
11/09 14:29, 7F

11/09 14:29, , 8F
但是3還是有點不懂。。。
11/09 14:29, 8F

11/09 14:31, , 9F
field with char = 0表示unity不管加幾次都不是零
11/09 14:31, 9F

11/09 14:32, , 10F
阿 是任何一個元素不管自己加自己幾次都不會是0
11/09 14:32, 10F

11/09 14:32, , 11F
為什麼說"如果要包涵某個non-0 elt就要包含無窮多個"
11/09 14:32, 11F

11/09 14:33, , 12F
為什麼特別考慮了" 包涵某個non-0 element" ?
11/09 14:33, 12F

11/09 21:31, , 13F
如果它包含有限子體的話 他特徵數就不是0
11/09 21:31, 13F

08/13 17:13, , 14F
i.e. x, 2x, https://noxiv.com
08/13 17:13, 14F

09/17 15:08, , 15F
09/17 15:08, 15F

11/10 10:57, , 16F
但是3還是有點不懂。。 https://muxiv.com
11/10 10:57, 16F
文章代碼(AID): #1Gd8vfC7 (Math)