[代數] order of a group

看板Math作者 (ssss)時間13年前 (2012/11/06 12:35), 編輯推噓1(104)
留言5則, 2人參與, 最新討論串1/1
需要幫忙確認做法正確~~ Thanks :) If the finite group G contains a subgroup of order 7 but no element (other than the identity) is its own inverse, then the order of G could be A.27 B.28 C.35 D.37 E.42 By Larange, A,D 刪掉 no element (other than the identity) is its own inverse 這句話其實有點不懂 意思是 a =! a' for all a belongs to S\{identity} 嗎? ps.這邊我讓S表示subgroup of G. a'表示inverse of a 如果意思是這樣,從這個條件可以得知G has no subgroup of order 2 (因為如果a = a', 那aa=aa'=identity, subgroup of order 2) 然後B,E就被刪掉 答案剩下C ps. 其實關於order of an element & order of a group我有點困惑 order of a group 是指cardinality order of an element 是指最小的m, st a^m=identity. 但有時候order of an element的定義似乎又可以用來定義order of a group 是不是我弄混了什麼事呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49

11/06 12:53, , 1F
最後倒數第二行 是因為那個group是由那個element
11/06 12:53, 1F

11/06 12:53, , 2F
生成的.
11/06 12:53, 2F

11/06 13:04, , 3F
所以 當order of element被用來當作是order of group
11/06 13:04, 3F

11/06 13:05, , 4F
時,前提是該element生成了G囉?
11/06 13:05, 4F

11/06 13:17, , 5F
如果是的話那我的做法就不對了@_@
11/06 13:17, 5F
文章代碼(AID): #1Gc9ElFA (Math)