[代數] 三元二次方程組 解法問題

看板Math作者 (Science & Truth)時間13年前 (2012/08/21 19:08), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
各位好! 小弟我在研究中出現了一個三元二次方程組 : {f(x,y,z) = [Aj]*x^2 + [Bj]*y^2 + [Cj]*z^2 + [Dj]*x*y*z + [Ej] = 0, j=1,2,3 } 似乎有兩種解法, 但我用MATLAB算出來的答案好像不太一樣, 我想請問這兩種解法有何差別? 還是有什麼地方我沒注意到的? <<< 解法一 >>> <Step1-1> {f(x,y,z) = [Aj]*x^2 + [Bj]*y^2 + [Cj]*z^2 + [Dj]*x*y*z + [Ej] = 0, j=1,2,3 } => { [Aj/Dj]*x^2 + [Bj/Dj]*y^2 + [Cj/Dj]*z^2 + [Ej/Dj] = -x*y*z, j=1,2,3 } <Step1-2> { {f(x,y,z), j=n} - {f(x,y,z),j=m} , n =\= m, n=1,2,3 ,m=1,2,3 } : => { g(x,y,z) = [Aj]*x^2 + [Bj]*y^2 + [Cj]*z^2 + [Ej] = 0, j=4,5,6 } <Step2-1> { g(x,y,z), j=1 } * (A5/A4) - { g(x,y,z), j=2 } : K11*y^2 + K12*z^2 + K13 = 0 ... (2-1) { g(x,y,z), j=1 } * (A6/A4) - { g(x,y,z), j=3 } : K21*y^2 + K22*z^2 + K23 = 0 ... (2-2) <Step2-2> (2-1)*(K21/K11)-(2-2) : K31*z^2 + K32 = 0 => z^2 = -(K32/K31) ... (2-3) <Step2-3> (2-3) into (2-1) => y^2 = -(1/K11)*(K13-K12*(K32/K31)) ... (2-4) <Step2-4> (2-3) & (2-4) into g(x,y,z) : => x can be found ! Finally [x y z] is solved ! _____________________________________________________________________ <<< 解法二 >>> 由板友wope大大提供 A1 * x^2 + B1 * y^2 + C1 * z^2 + D1 *xyz = E1 (1-1) A2 * x^2 + B2 * y^2 + C2 * z^2 + D2 *xyz = E2 (1-2) A3 * x^2 + B3 * y^2 + C3 * z^2 + D3 *xyz = E3 (1-3) (1-1)*A2/A1 : A2 * x^2 + A2*B1 * y^2/A1 + A2*C1 * z^2/A1 + A2*D1 *xyz/A1 = A2*E1/A1 (1-4) (1-1)*A3/A1 : A3 * x^2 + A3*B1 * y^2/A1 + A3*C1 * z^2/A1 + A3*D1 *xyz/A1 = A3*E1/A1 (1-5) (1-4)-(1-2): (A2*B1/A1-B2)*y^2 + (A2*C1/A1-C2)*z^2 + (A2*D1/A1-D2)*xyz = (A2*E1/A1-E2) (1-6) 取 A11=(A2*B1/A1-B2) A12=(A2*C1/A1-C2) A13=(A2*D1/A1-D2) A14=(A2*E1/A1-E2) A11*y^2 + A12*z^2 + A13*xyz = A14 (2-1) (1-5)-(1-3): (A3*B1/A1-B3)*y^2 + (A3*C1/A1-C3)*z^2 + (A3*D1/A1-D3)*xyz = (A3*E1/A1-E3) (1-7) 取 A21=(A3*B1/A1-B3) A22=(A3*C1/A1-C3) A23=(A3*D1/A1-D3) A24=(A3*E1/A1-E3) A21*y^2 + A22*z^2 + A23*xyz = A24 (2-2) (2-2)*A11/A21: A11*y^2 + A11*A22*z^2/A21 + A11*A23*xyz/A21 = A11*A24/A21 (2-3) (2-3)-(2-1): (A11*A22/A21-A12)*z^2 + (A11*A23/A21-A13)*xyz = (A11*A24/A21-A14) (2-4) 取 A31=(A11*A22/A21-A12) A32=(A11*A23/A21-A13) A33=(A11*A24/A21-A14) A31*z^2 + A32*xyz = A33 (2-5) 取 A41=A32/A31 A42=A33/A31 z^2 + A41*xyz = A42 (2-6) -->z^2=A42-A41*xyz (2-7) 代回(1-1)(1-2)(1-3)可得 A1 * x^2 + B1 * y^2 + (D1-c1*A41) *xyz = E1-A42*C1 (3-1) A2 * x^2 + B2 * y^2 + (D2-c2*A41) *xyz = E2-A42*C2 (3-2) A3 * x^2 + B3 * y^2 + (D3-C3*A41) *xyz = E3-A42*C3 (3-3) 取 Y1=x^2 (3-4) Y2=y^2 (3-5) Y3=xyz (3-6) F1=(D1-c1*A41) F2=(D2-c2*A41) F3=(D3-C3*A41) G1=E1-A42*C1 G2=E2-A42*C2 G3=E3-A42*C3 A1 * Y1 + B1 * Y2 + F1 *Y3 = G1 (4-1) A2 * Y1 + B2 * Y2 + F2 *Y3 = G2 (4-2) A3 * Y1 + B3 * Y2 + F3 *Y3 = G3 (4-3) 這裡Y1,Y2,Y3該就可以解了 再代回(3-4)(3-5)(3-6) Y1=x^2 Y2=y^2 Y3=xyz 就可以得到x,y,z的值 ________________________________________________________________ 以上,感謝耐心閱讀 ※ 編輯: joe7078 來自: 140.110.200.15 (08/21 19:11)
文章代碼(AID): #1GCsmeTe (Math)